如圖,將矩形紙片ABCD(AD>DC)的一角沿著過點D的直線折疊,使點A落在BC邊上,落點為E,折痕交AB邊交于點F;若BE:EC=m:n,則AF:FB=______(用含有m、n的代數(shù)式表示)
∵∠DEF=90°,∴∠BEF+∠CED=90°.
又∠BEF+∠BFE=90°,
∴∠BFE=∠CED.又∠B=∠C,
△BEF△CDE.
∴EF:FB=DE:EC.
∵BE:EC=m:n,
∴可設BE=mk,EC=nk,則DE=(m+n)k.
EF
FB
=
DE
EC
=
(m+n)k
nk
=
m+n
n

∵AF=EF,
∴AF:FB=
m+n
n

故答案為:
m+n
n
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖是一張矩形紙片ABCD,AD=10cm,若將紙片沿DE折疊,使DC落在DA上,點C的對應點為點F,若BE=6cm,則CD=(  )
A.4cmB.6cmC.8cmD.10cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在正方形ABCD中,對角線AC,BD交于點O,折疊正方形ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展平后,折痕DE分別交AB,AC于點E,G,連接GF,下列結論:①AE=AG;②tan∠AGE=2;③S△DOG=S四邊形EFOG;④四邊形ABFG為等腰梯形;⑤BE=2OG,則其中正確的結論個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,梯形ABCD中,ADBC,AB=DC,∠ABC=75°,DEAB交BC于點E,將△DCE沿DE翻折,得到△DFE,則∠EDF=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,點O是原點,點B(0,
3
),點A在第一象限且AB⊥BO,點E是線段AO的中點,點M在線段AB上.若點B和點E關于直線OM對稱,則點M的坐標是(______,______).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ACB=90°,∠A=25°,D是AB上一點,將△BCD沿CD折疊,使B點落在AC邊上的E處,則∠ADE等于( 。
A.25°B.30°C.35°D.40°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一個汽車車牌在水中的倒影為,則該車的牌照號碼是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

把一張對面互相平行的紙條折成如圖那樣,EF是折痕,若∠EFB=32°,則∠BGE=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,長方形制片ABCD中,AB=8cm,AD=6cm,按下列步驟進行裁剪和拼圖

第一步:如圖①,在線段AD上任意取一點E,沿EB,EC剪下一個三角形紙片EBC(余下部分不再使用);
第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點M,線段BC上任意取一點N,沿MN將梯形紙片GBCH剪成兩部分;
第三步:如圖③,將MN左側(cè)紙片繞G點按順時針方向旋轉(zhuǎn)180°,使線段GB與GE重合,將MN右側(cè)紙片繞H點按逆時針方向旋轉(zhuǎn)180°,使線段HC與HE重合,拼成一個與三角形紙片EBC面積相等的四邊形紙片.(注:裁剪和拼圖過程均無縫且不重疊)
(1)所拼成得四邊形是什么特殊四邊形?
(2)則拼成的這個四邊形紙片的周長的最小值是多少?

查看答案和解析>>

同步練習冊答案