如圖,已知在平面直角坐標(biāo)系xoy中,拋物線y=ax2+bx+c(a>0)與x軸相交于A(-1,0),B(3,0)兩點(diǎn),對(duì)稱軸l與x軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,且∠ADC的正切值為
(1)求頂點(diǎn)D的坐標(biāo);
(2)求拋物線的表達(dá)式;
(3)F點(diǎn)是拋物線上的一點(diǎn),且位于第一象限,連接AF,若∠FAC=∠ADC,求F點(diǎn)的坐標(biāo).

【答案】分析:(1)由拋物線和x軸交于A,B兩點(diǎn),可求出對(duì)稱軸方程,再由已知條件可求出CD的長(zhǎng),進(jìn)而求出D的坐標(biāo);
(2)設(shè)拋物線的解析式為y=a(x-h)2+k,由(1)可知h=1,k=-4,再把A或B點(diǎn)的坐標(biāo)代入求出a的值即可;
(3)過(guò)點(diǎn)F作作FH⊥x軸,垂足為點(diǎn)H,設(shè)F(x,x2-2x-3),由已知條件求出x的值,即可求出F的坐標(biāo).
解答:解:(1)∵拋物線與x軸相交于A(-1,0),B(3,0)兩點(diǎn),
∴對(duì)稱軸直線l==1,
∵對(duì)稱軸l與x軸相交于點(diǎn)C,
∴AC=2,
∵∠ACD=90°,tan∠ADC=,
∴CD=4,
∵a>0,
∴D(1,-4);

(2)設(shè)y=a(x-h)2+k,有(1)可知h=1,k=-4,
∴y=a(x-1)2-4,
將x=-1,y=0代入上式,
得:a=1,
所以,這條拋物線的表達(dá)為y=x2-2x-3;

(3)過(guò)點(diǎn)F作作FH⊥x軸,垂足為點(diǎn)H,
設(shè)F(x,x2-2x-3),
∵∠FAC=∠ADC,
∴tan∠FAC=tan∠ADC,
∵tan∠ADC=,
∴tan∠FAC==,
∵FH=x2-2x-3,AH=x+1,
,
解得x1=,x2=-1(舍),
∴F(,).
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合應(yīng)用,這類試題一般難度較大.解這類問(wèn)題關(guān)鍵是善于將函數(shù)問(wèn)題轉(zhuǎn)化為方程問(wèn)題,善于利用幾何圖形的有關(guān)性質(zhì)、定理和二次函數(shù)的知識(shí),并注意挖掘題目中的一些隱含條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為A(-3,7),
B(1,5),C(-5,3).
(1)將△ABC向下平移3個(gè)單位長(zhǎng)度,得到△A′B′C′,再向右平移5個(gè)單位長(zhǎng)度,得到△A″B″C″.在圖中分別作出△A′B′C′,△A″B″C″;
(2)分別寫出點(diǎn)A″、B″、C″的坐標(biāo);
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在平面直角坐標(biāo)系xOy中,直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過(guò)點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),角的兩精英家教網(wǎng)邊分別交y軸的正半軸、x軸的正半軸于點(diǎn)E和F.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(guò)(1)中拋物線的頂點(diǎn)時(shí),求CF的長(zhǎng);
(3)在拋物線的對(duì)稱軸上取兩點(diǎn)P、Q(點(diǎn)Q在點(diǎn)P的上方),且PQ=1,要使四邊形BCPQ的周長(zhǎng)最小,求出P、Q兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在平面直角坐標(biāo)系中,直角梯形ABCD,AB∥CD,AD=CD,∠ABC=90°,A、B在x軸上,點(diǎn)D在y軸上,若tan∠OAD=
4
3
,B點(diǎn)的坐標(biāo)為(5,0).
(1)求直線AC的解析式;
(2)若點(diǎn)Q、P分別從點(diǎn)C、A同時(shí)出發(fā),點(diǎn)Q沿線段CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)P沿線段AB向點(diǎn)B運(yùn)動(dòng),Q點(diǎn)的速度為每秒
5
個(gè)單位長(zhǎng)度,P點(diǎn)的速度為每秒2個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為t秒,△PQE的面積為S,求S與t的函數(shù)關(guān)系式(請(qǐng)直接寫出自變量t的取值范圍);
(3)在(2)的條件下,過(guò)P點(diǎn)作PQ的垂線交直線CD于點(diǎn)M,在P、Q運(yùn)動(dòng)的過(guò)程中,是否在平面內(nèi)有一點(diǎn)N,使四邊形QPMN為正方形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•樊城區(qū)模擬)如圖,已知在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=
m
x
(m≠0)的圖象相交于A、B兩點(diǎn),且點(diǎn)B的縱坐標(biāo)為-
1
2
,過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,AC=1,OC=2.求:
(1)求反比例函數(shù)的解析式和一次函數(shù)的解析式;
(2)求不等式kx+b-
m
x
<0的解集(請(qǐng)直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在平面直角坐標(biāo)系中,△ABC的位置如圖所示
(1)把△ABC平移后,三角形某一邊上一點(diǎn)P(x,y)的對(duì)應(yīng)點(diǎn)為P′(x+4,y-2),平移后所得三角形的各頂點(diǎn)的坐標(biāo)分別為:A1
(3,2)
(3,2)
、B1
(0,-3)
(0,-3)
、C1
(5,-1)
(5,-1)
;
(2)在圖上畫出平移后的三角形△A1B1C1
(3)請(qǐng)計(jì)算△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案