如圖,正方形ABCD內(nèi)接于⊙O,⊙O的半徑為2,以圓心O為頂點作∠MON,使∠MON=90°,OM、ON分別與⊙O交于點E、F,與正方形ABCD的邊交于點G、H,則由OE、OF、數(shù)學(xué)公式及正方形ABCD的邊圍成的圖形(陰影部分)的面積S=________.

π-2
分析:可以作OP⊥AB,OQ⊥BC,利用全等的知識即可證明△OPH≌△OQG,從而可得四邊形OHBG與正方形OQBP的面積,從而利用面積差法即可得出陰影部分的面積.
解答:

過點O作OP⊥AB,OQ⊥BC,則OP=OQ,
在△OPH和△OQG中,,
故可得△OPH≌△OQG,從而可得四邊形OHBG與正方形OQBP的面積,
∵圓的半徑為2,
∴OQ=OP=
S陰影=S扇形OEF-SOHBG=S扇形OEF-SOQBP=-×=π-2.
故答案為:π-2.
點評:此題考查了扇形的面積及正方形的性質(zhì),有一定難度,解答本題的關(guān)鍵是利用全等的知識得出四邊形OHBG與正方形OQBP的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案