某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):
信息一:若投資A種產(chǎn)品,當投資金額為x(萬元)時,所獲利潤為0.4x萬元;
信息二:若投資B種產(chǎn)品,當投資金額為x(萬元)時,所獲利潤為萬元;
(1)該企業(yè)準備單獨投資A種產(chǎn)品或單獨投資B種產(chǎn)品,想獲得利潤2.4萬元,請你分別求出單獨投資A種產(chǎn)品或單獨投資B種產(chǎn)品時所需的投資金額;
(2)如果該企業(yè)計劃對兩種產(chǎn)品共投資10萬元,請你設(shè)計一個能獲利5萬元的投資方案。
(1)單獨投資A產(chǎn)品所需投資金額為6萬元;單獨投資B產(chǎn)品所需投資金額為2萬元或6萬元;
(2)設(shè)投資B產(chǎn)品x萬元,則投資A產(chǎn)品為(10-x)萬元,
             根據(jù)題意列方程得       解得
             即:投資A產(chǎn)品9萬元,投資B產(chǎn)品1萬元;或投資A產(chǎn)品5萬元,投資B產(chǎn)品5萬元。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):
信息一:如果單獨投資A種產(chǎn)品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:
x(萬元) 1 2 2.5 3 5
yA(萬元) 0.4 0.8 1 1.2 2
信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.
(1)求出yB與x的函數(shù)關(guān)系式;
(2)從所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式;
(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):
信息一:如果單獨投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:yA=kx,并且當投資5萬元時,可獲利潤2萬元;
信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,并且當投資2萬元時,可獲利潤2.4萬元;當投資4萬元,可獲利潤3.2萬元.
(1)請分別求出上述的正比例函數(shù)表達式與二次函數(shù)表達式;
(2)如果企業(yè)同時對A、B兩種產(chǎn)品共投資10萬元,請你設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):

信息一:如果單獨投資A種產(chǎn)品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:

x(萬元)

1

2

2.5

3

5

yA(萬元)

0.4

0.8

1

1.2

2

信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.

(1)求出yB與x的函數(shù)關(guān)系式.

(2)從所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式.

(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):信息一:如果單獨投資A種產(chǎn)品,所獲利潤y(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:
x(萬元)
1
2
2.5
3
5
y(萬元)
0.4
0.8
1
1.2
2
信息二:如果單獨投資B種產(chǎn)品,則所獲利潤y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.
(1)求出y與x的函數(shù)關(guān)系式.
(2)從所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示y與x之間的關(guān)系,并求出y與x的函數(shù)關(guān)系式.
(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆河南省周口市初一下學期坐標方法的簡單應(yīng)用專題測驗 題型:解答題

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):

信息一:如果單獨投資A種產(chǎn)品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:

x(萬元)

1

2

2.5

3

5

yA(萬元)

0.4

0.8

1

1.2

2

信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.

(1)求出yB與x的函數(shù)關(guān)系式.

(2)從所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式.

(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

 

查看答案和解析>>

同步練習冊答案