(2002•濟(jì)南)如圖,已知AB,CD分別是半圓O的直徑和弦,AD和BC相交于點(diǎn)E,若∠AEC=α,則S△CDE:S△ABE等于( )

A.sinα
B.cosα
C.sin2α
D.cos2α
【答案】分析:很顯然△CDE和△ABE是相似三角形(根據(jù)圓周角定理,可找出兩組對(duì)應(yīng)角相等),因此它們的面積比等于相似比的平方,而cosα正好等于兩三角形的相似比,由此可得出所求的結(jié)論.
解答:解:連接AC,
∵AB是半圓O的直徑,
∴∠ACE=90°.
∴cosα=
∵∠ECD=∠EAB,∠CDE=∠ABE,
∴△ECD∽△EAB,
=(2=cos2α.
故選D.
點(diǎn)評(píng):本題考查銳角三角函數(shù)的概念與運(yùn)用:在直角三角形中,正弦等于對(duì)比斜;余弦等于鄰比斜;正切等于對(duì)比鄰.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2002•濟(jì)南)如圖,已知直線y=-x+6與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)P為x軸上可以移動(dòng)的點(diǎn),且點(diǎn)P在點(diǎn)A的左側(cè),PM⊥x軸,交直線y=-x+6于點(diǎn)M,有一個(gè)動(dòng)圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當(dāng)⊙O'與y軸也相切時(shí),點(diǎn)P的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圓》(01)(解析版) 題型:選擇題

(2002•濟(jì)南)如圖,已知AB,CD分別是半圓O的直徑和弦,AD和BC相交于點(diǎn)E,若∠AEC=α,則S△CDE:S△ABE等于( )

A.sinα
B.cosα
C.sin2α
D.cos2α

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•濟(jì)南)如圖,已知直線y=-x+6與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)P為x軸上可以移動(dòng)的點(diǎn),且點(diǎn)P在點(diǎn)A的左側(cè),PM⊥x軸,交直線y=-x+6于點(diǎn)M,有一個(gè)動(dòng)圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當(dāng)⊙O'與y軸也相切時(shí),點(diǎn)P的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•濟(jì)南)如圖,有一個(gè)邊長(zhǎng)為6cm的正三角形ABC木塊,點(diǎn)P是邊CA的延長(zhǎng)線上的點(diǎn),在A、P之間拉一條細(xì)繩,繩長(zhǎng)AP為15cm.握住點(diǎn)P,拉直細(xì)繩,把它全部緊緊纏繞在△ABC木塊上(纏繞時(shí)木塊不動(dòng)),若圓周率取3.14,點(diǎn)P運(yùn)動(dòng)的路線長(zhǎng)為( )(精確到0.1cm)

A.28.3cm
B.28.2cm
C.56.5cm
D.56.6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•濟(jì)南)如圖,有一塊邊長(zhǎng)為2的正方形ABCD厚紙板,按照下面做法,做了一套七巧板:作圖①,作對(duì)角線AC,分別取AB,BC中點(diǎn)E,F(xiàn),連接EF作DG⊥EF于G,交AC于H,過G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K,將正方形ABCD沿畫出的線剪開,現(xiàn)由它拼出一座橋(如圖②),這座橋的陰影部分的面積是( )
A.8
B.6
C.5
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案