在正n邊形中,當(dāng)n為________時(shí),正n邊形既是軸對(duì)稱圖形又是中心對(duì)稱圖形.

答案:偶數(shù)
提示:

n邊形都是軸對(duì)稱圖形,n為偶數(shù)時(shí)才是中心對(duì)稱圖形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,在正方形ABCD中,O為正方形的中心,∠MON繞著O點(diǎn)自由的轉(zhuǎn)動(dòng),角的兩邊與正方形的邊BC、CD交于E、F.若∠MON=90°,正方形的面積等于S.求四邊形OECF的面積.(用S表示)
下面給出一種求解的思路,你可以按這一思路求解,也可以選擇另外的方法去求.
解:連接OB、OC.∵O為正方形的中心,∴∠BOC=
3604
=90°,
∵∠MON=90°∴∠FOC+∠EOC=∠EOB+∠EOC=90°.∴∠FOC=∠EOB
(下面請(qǐng)你完成余下的解題過(guò)程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),O是△ABC的中心,∠MON=120°,正三角形ABC的面積等于S.求四邊形OECF的面積.(用S表示)
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X”,正n邊形的面積等于S.請(qǐng)你作出猜想:當(dāng)∠MON=
 
°時(shí),四邊形OECF的面積=
 
(用S表示,并直接寫出答案,不需要證明).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜興市一模)如圖1,正方形ABCD的邊長(zhǎng)為a(a為常數(shù)),對(duì)角線AC、BD相交于點(diǎn)O,將正方形KPMN(KN>
1
2
AC)的頂點(diǎn)K與點(diǎn)O重合,若繞點(diǎn)K旋轉(zhuǎn)正方形KPMN,不難得出,兩個(gè)正方形重合部分的面積始終是正方形ABCD面積的四分之一.

(1)①在旋轉(zhuǎn)過(guò)程中,正方形ABCD的邊被正方形KPMN覆蓋部分總長(zhǎng)度是定值嗎?如果是,請(qǐng)求出這個(gè)定值,如果不是,請(qǐng)說(shuō)明理由.
②如圖2,若將上題中正方形ABCD改為正n邊形,正方形KPMN改為半徑足夠長(zhǎng)的扇形,并將扇形的圓心繞點(diǎn)O旋轉(zhuǎn),設(shè)正n邊形的邊長(zhǎng)為a,面積為S,當(dāng)扇形的圓心角為
360
n
360
n
°時(shí),兩個(gè)圖形重合部分的面積是
s
n
,這時(shí)正n邊形的邊被扇形覆蓋部分的總長(zhǎng)度為
a
a

(2)如圖3,在正方形KNMP旋轉(zhuǎn)過(guò)程中,記KP與AD的交點(diǎn)為E,KN與CD的交點(diǎn)為F.連接EF,令A(yù)E=x,S△OEF=S,當(dāng)正方形ABCD的邊長(zhǎng)為2時(shí),試寫出S關(guān)于x的函數(shù)關(guān)系式,并求出x為何值時(shí)S取最值,最值是多少.
(3)若將這兩張正方形按如圖4所示方式疊放,使K點(diǎn)與CD的中點(diǎn)E重合(AB≤
KM
2
),正方形ABCD以1cm/s的速度沿射線KM運(yùn)動(dòng),當(dāng)正方形ABCD完全進(jìn)入正方形KPMN時(shí)即停止運(yùn)動(dòng),正方形ABCD的邊長(zhǎng)為8cm,且CD⊥KM,求兩正方形重疊部分面積y與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說(shuō),使用給定的某些多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里稱為平面密鋪).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角和為360°時(shí),就能夠拼成一個(gè)平面圖形.
探究用同一種正多邊形進(jìn)行平面密鋪.
例如:如圖1,用三個(gè)同種類型(大小一樣、形狀相同)的正六邊形地磚可以平面密鋪.
(1)請(qǐng)問(wèn)僅限于同一種類型的多邊形進(jìn)行密鋪,哪幾種能平面密鋪?
①②
①②
(填序號(hào));
①正三角形    ②正四邊形     ③正五邊形     ④正八邊形
探究用兩種邊長(zhǎng)相等的正多邊形進(jìn)行平面密鋪.
例如:如圖2,二個(gè)正三角形和二個(gè)正六邊形可以平面密鋪.
(2)限用兩種邊長(zhǎng)相等的正多邊形進(jìn)行平面密鋪,以下哪幾種是可行的?
ABE
ABE

A.正三角形和正方形      B.正方形和正八邊形         C.正方形和正五邊形
D.正八邊形和正六邊形    E.正三角形和正十二邊形    F.正三角形和正五邊形
(3)繼續(xù)推廣到用三種不同的正多邊形進(jìn)行平面密鋪,請(qǐng)寫出符合題意的不同組合.
例如:①正三角形、正方形、正六邊形;
②正三角形、正九邊形、正十八邊形;
正三角形、正四邊形,正十二邊形
正三角形、正四邊形,正十二邊形

正三角形,正十邊形,正十五邊形
正三角形,正十邊形,正十五邊形

(4)如果用形狀,大小相同的如圖3方格紙中的三角形,能進(jìn)行平面密鋪嗎?若能,請(qǐng)?jiān)诜礁窦堉挟嫵雒茕伒脑O(shè)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:022

在正n邊形中,當(dāng)n為________時(shí),正n邊形既是軸對(duì)稱圖形又是中心對(duì)稱圖形.

查看答案和解析>>

同步練習(xí)冊(cè)答案