若一組數(shù)據(jù)x1,x2,…,xn的方差為9,則數(shù)據(jù)2x1-3,2x2-3,…,2xn-3的標準差是
6
6
分析:首先設原數(shù)據(jù)的平均數(shù)為
.
x
,則新數(shù)據(jù)的平均數(shù)為2
.
x
-3,然后利用方差的公式計算得出答案,求出標準差即可.
解答:解:設原數(shù)據(jù)的平均數(shù)為
.
x
,則新數(shù)據(jù)的平均數(shù)為2
.
x
-3,
則其方差為
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]=9,
則新數(shù)據(jù)的方差為:
1
n
[(2x1-3-2
.
x
+3)2+(2x2-3-2
.
x
+3)2+…+(2xn-3-2
.
x
+3)2]
=4×
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]
=36.
故數(shù)據(jù)2x1-3,2x2-3,…,2xn-3的標準差是:6.
故答案為:6.
點評:本題考查了方差的定義.當數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、若一組數(shù)據(jù)x1,x2,x3.x4,…,xn的平均數(shù)為2010,那么x1+2,x2+2,x3+2,x4+2…,xn+2這組數(shù)據(jù)的平均數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若一組數(shù)據(jù)x1,x2,…,xn的方差是零,則(  )
A、
.
x
=0
B、x1=x2=…=xn
C、x1=x2=…=xn=0
D、這組數(shù)據(jù)的中位數(shù)為零

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若一組數(shù)據(jù)x1,x2,x3,x4的方差s2=
14
[(x1-1)2+(x2-1)2+(x3-1)2+(x4-1)2],則這組數(shù)據(jù)的平均數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列說法正確的是
(1)(3)
(1)(3)
(填序號,錯填或漏填均不得分).
(1)如圖,是二次函數(shù)y=ax2+bx+c的圖象,則abc>0.
(2)若一組數(shù)據(jù)x1,x2,x3,…,xn的方差為a,則數(shù)據(jù)x1-2,x2-2,x3-2,xn-2的方差為a-2.
(3)若方程
2m
x-2
-1=
3x
2-x
方程無解,則m=-3.
(4)在反比例函數(shù)y=
1
x
中,y隨著x的增大而減。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若一組數(shù)據(jù)x1,x2,…,xn的平均數(shù)是a,方差是b,則4x1-3,4x2-3,…,4xn-3的平均數(shù)是
4a-3
4a-3
,方差是
16b
16b

查看答案和解析>>

同步練習冊答案