(本題14分)如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于C點(diǎn),頂點(diǎn)為D.過點(diǎn)C、D的直線與x軸交于E點(diǎn),以O(shè)E為直徑畫⊙O1,交直線CD于P、E兩點(diǎn).

(1)求E點(diǎn)的坐標(biāo);
(2)聯(lián)結(jié)PO1、PA.求證:
(3) ①以點(diǎn)O2 (0,m)為圓心畫⊙O2,使得⊙O2與⊙O1相切,當(dāng)⊙O2經(jīng)過點(diǎn)C時(shí),求實(shí)數(shù)m
的值;
②在①的情形下,試在坐標(biāo)軸上找一點(diǎn)O3,以O(shè)3為圓心畫⊙O3,使得⊙O3與⊙O1、⊙O2同時(shí)相切.直接寫出滿足條件的點(diǎn)O3的坐標(biāo)(不需寫出計(jì)算過程).
解:(1) ( 3分) ∴   1分
設(shè)直線CD:   將C、D代入得  解得  
∴CD直線解析式:  1分        1分
(2) ( 4分)令y="0 " 得  解得
  1分
又∵、 ∴以O(shè)E為直徑的圓心、半徑.
設(shè) 
 得  解得(舍)
   2分
 
      
  1分 ∴ 
(3) ( 7分)①    
據(jù)題意,顯然點(diǎn)在點(diǎn)C下方 
當(dāng)⊙O2與⊙O1外切時(shí) 
代入得   解得(舍)2分
當(dāng)⊙O2與⊙O1內(nèi)切時(shí) 
代入得   解得(舍) 2分
 
    3分解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題14分)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn).

(1)求正比例函數(shù)和反比例函數(shù)的解析式;

(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點(diǎn),求的值和這個(gè)一次函數(shù)的解析式;

(3)第(2)問中的一次函數(shù)的圖象與軸、軸分別交于C、D,求過A、BD三點(diǎn)的二次函數(shù)的解析式;

(4)在第(3)問的條件下,二次函數(shù)的圖象上是否存在點(diǎn)E,使的面積的面積S滿足:?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向點(diǎn)D運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求AD的長;
(2)設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式,并求自變量的取值范圍;
(3)探究:在BC邊上是否存在點(diǎn)M使得四邊形PDQM是菱形?若存在,請(qǐng)找出點(diǎn)M,并求出BM的長;不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆上海市黃浦區(qū)數(shù)學(xué)學(xué)業(yè)考試模擬試卷 題型:解答題

(本題14分)如圖11,在△ABC中,∠ACB=,AC=BC=2,M是邊AC的中點(diǎn),
CH⊥BM于H.

(1)試求sin∠MCH的值;
(2)求證:∠ABM=∠CAH;
(3)若D是邊AB上的點(diǎn),且使△AHD為等腰三角形,請(qǐng)直接寫出AD的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省仙巖二中九年級(jí)數(shù)學(xué)模擬試題數(shù)學(xué)卷 題型:解答題

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向點(diǎn)D運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求AD的長;
(2)設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式,并求自變量的取值范圍;
(3)探究:在BC邊上是否存在點(diǎn)M使得四邊形PDQM是菱形?若存在,請(qǐng)找出點(diǎn)M,并求出BM的長;不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷市)九年級(jí)第二次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題14分)如圖,AB為⊙O的直徑,AC為⊙O的弦,AD平分∠BAC,交⊙O于點(diǎn)D,DEAC,交AC的延長線于點(diǎn)E

(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;

(2)若AE=8,⊙O的半徑為5,求DE的長.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案