如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為 .
5
【考點】正方形的性質(zhì);三角形的面積;勾股定理.
【分析】根據(jù)正方形性質(zhì)得出AD=BC=CD=AB,根據(jù)面積求出EM,得出BC=4,根據(jù)勾股定理求出即可.
【解答】解:
過E作EM⊥AB于M,
∵四邊形ABCD是正方形,
∴AD=BC=CD=AB,
∴EM=AD,BM=CE,
∵△ABE的面積為8,
∴×AB×EM=8,
解得:EM=4,
即AD=DC=BC=AB=4,
∵CE=3,
由勾股定理得:BE===5,
故答案為:5.
【點評】本題考查了三角形面積,正方形性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是求出BC的長,難度適中.
科目:初中數(shù)學(xué) 來源: 題型:
某酒廠生產(chǎn)A、B兩種品牌的酒,每天兩種酒共生產(chǎn)600瓶,每種酒每瓶的成本和利潤如下表所示.設(shè)每天共獲利y元,每天生產(chǎn)A種品牌的酒x瓶.
A | B | |
成本(元) | 50 | 35 |
利潤(元) | 20 | 15 |
(1)請寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)如果該廠每天至少投入成本25000元,且生產(chǎn)B種品牌的酒不少于全天產(chǎn)量的55%,那么共有幾種生產(chǎn)方案?并求出每天至少獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將邊長為1的等邊△PQR沿著邊長為1的正五邊形ABCDE外部的邊連續(xù)滾動(點Q、點R分別與點A、點B重合),當(dāng)△PQR第一次回到原來的起始位置時(頂點位置與原來相同),點P所經(jīng)過的路線長為( 。
A. B. C.8π D.16π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2001年亞洲鐵人三項賽在徐州市風(fēng)光秀麗的云龍湖畔舉行.比賽程序是:運動員先同時下水游泳1.5千米到第一換項點,在第一換項點整理服裝后,接著騎自行車行40千米到第二換項點,再跑步10千米到終點.下表是2001年亞洲鐵人三項賽女子組(19歲以下)三名運動員在比賽中的成績(游泳成績即游泳所用時間,其它類推,表內(nèi)時間單位為秒)
運動員號碼 | 游泳成績 | 第一換項點所用時間 | 自行車成績 | 第二換項點所用時間 | 長跑成績 |
191 | 1997 | 75 | 4927 | 40 | 3220 |
194 | 1503 | 110 | 5686 | 57 | 3652 |
195 | 1354 | 74 | 5351 | 44 | 3195 |
(1)填空(精確到0.01):
第191號運動員騎自行車的平均速度是 米/秒;
第194號運動員騎自行車的平均速度是 米/秒;
第195號運動員騎自行車的平均速度是 米/秒;
(2)如果運動員騎自行車都是勻速的,那么在騎自行車的途中,191號運動員會追上195號或194號嗎?如果會,那么追上時離第一換項點有多少米(精確到0.01)?如果不會,為什么?
(3)如果長跑也都是勻速的,那么在長跑途中這三名運動員中有可能某人追上某人嗎?為什么?
查看答案和解析>>