如圖,在□ABCD中,分別延長(zhǎng)BA、DC到點(diǎn)E、H,使得AE=AB,CH=CD,連接EH,分別交AD,BC于點(diǎn)F、G.求證:△AEF≌△CHG.
根據(jù)平行四邊形的性質(zhì)可得出AE=CH,再根據(jù)平行線的性質(zhì)及等角代換的原理可得出∠E=∠H,∠EAF=∠D,從而利用ASA可證得結(jié)論.
【解析】
試題分析:在?ABCD中,AB∥CD,AB=CD,
∴∠E=∠H,∠EAF=∠D,
∵四邊形ABCD是平行四邊形,
∴∠BAD=∠BCD,
∴∠EAF=∠HCG,
∵AE=AB,CH=CD,
∴AE=CH,
在△AEF與△CHG中,
∠E=∠H,AE=CH,∠EAF=∠HCG
∴△AEF≌△CHG(ASA).
考點(diǎn):平行四邊形的性質(zhì),全等三角形的判定
點(diǎn)評(píng):解答本題的關(guān)鍵根據(jù)平行線的性質(zhì)得出等角,然后利用全等三角形的判定定理進(jìn)行解題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
13 |
13 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com