(2009•莆田)已知:等邊△ABC的邊長為a.
探究(1):如圖1,過等邊△ABC的頂點A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=a;
探究(2):在等邊△ABC內(nèi)取一點O,過點O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點D、E、F.
①如圖2,若點O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質得到兩個正確結論(不必證明):結論1. OD+OE+OF=a;結論2. AD+BE+CF=a;
②如圖3,若點O是等邊△ABC內(nèi)任意一點,則上述結論1,2是否仍然成立?如果成立,請給予證明;如果不成立,請說明理由.

【答案】分析:(1)本題中△ABC為等邊三角形,AB=BC=a,∠ABC=60°,求出∠N,∠G的值,在直角△AMB、△CNB中,可以先用a表示出MB,NB然后再表示出MN,這樣就能證得MN=a;
(2)判定①是否成立可通過構建直角三角形,把所求的線段都轉化到直角三角形中進行求解;
判斷②是否成立,也要通過構建直角三角形,可根據(jù)勾股定理,把所求的線段都表示出來,然后經(jīng)過化簡得出結論②是否正確.
解答:(1)證明:如圖1,∵△ABC為等邊三角形,
∴∠ABC=60°.
∵BC⊥MN,BA⊥MG,
∴∠CBM=∠BAM=90°.
∴∠ABM=90°-∠ABC=30°.
∴∠M=90°-∠ABM=60°.
同理:∠N=∠G=60°.
∴△MNG為等邊三角形.
在Rt△ABM中,BM=a,
在Rt△BCN中,BN=a,
∴MN=BM+BN=a.

(2)②:結論1成立.
證明:如圖3,過點O作GH∥BC,分別交AB、AC于點G、H,過點H作HM⊥BC于點M,
∴∠DGO=∠B=60°,∠OHF=∠C=60°,
∴△AGH是等邊三角形,
∴GH=AH.
∵OE⊥BC,
∴OE∥HM,
∴四邊形OEMH是矩形,
∴HM=OE.
在Rt△ODG中,OD=OG•sin∠DGO=OG•sin60°=OG,
在Rt△OFH中,OF=OH•sin∠OHF=OH•sin60°=OH,
在Rt△HMC中,HM=HC•sinC=HC•sin60°=HC,
∴OD+OE+OF=OD+HM+OF=OG+HC+OH
=(GH+HC)=AC=a.

(2)②:結論2成立.
證明:如圖4,連接OA、OB、OC,根據(jù)勾股定理得:
BE2+OE2=OB2=BD2+OD2①,
CF2+OF2=OC2=CE2+OE2②,
AD2+OD2=AO2=AF2+OF2③,
①+②+③得:BE2+CF2+AD2=BD2+CE2+AF2,
∴BE2+CF2+AD2=(a-AD)2+(a-BE)2+(a-CF)2=a2-2AD•a+AD2+a2-2BE•a+BE2+a2-2CF•a+CF2
整理得:2a(AD+BE+CF)=3a2
∴AD+BE+CF=a.
點評:本題中綜合考查了等邊三角形的判定和性質,解直角三角形等知識點,由于知識點比較多,本題的難度比較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•莆田)已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省莆田市中考數(shù)學試卷(解析版) 題型:解答題

(2009•莆田)已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《三角形》(12)(解析版) 題型:解答題

(2009•莆田)已知:等邊△ABC的邊長為a.
探究(1):如圖1,過等邊△ABC的頂點A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=a;
探究(2):在等邊△ABC內(nèi)取一點O,過點O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點D、E、F.
①如圖2,若點O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質得到兩個正確結論(不必證明):結論1. OD+OE+OF=a;結論2. AD+BE+CF=a;
②如圖3,若點O是等邊△ABC內(nèi)任意一點,則上述結論1,2是否仍然成立?如果成立,請給予證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省楚雄州雙柏縣中考數(shù)學模擬試卷(妥甸中學)(解析版) 題型:填空題

(2009•莆田)已知⊙O1和⊙O2的半徑分別是一元二次方程(x-1)(x-2)=0的兩根,且O1O2=2,則⊙O1和⊙O2的位置關系是   

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年江蘇省揚州市梅嶺中學九年級(下)期中數(shù)學試卷(解析版) 題型:解答題

(2009•莆田)已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點D,過點D作弦DE⊥AB,垂足為點F,連接BD、BE.
(1)仔細觀察圖形并寫出四個不同的正確結論:①______,②______,③______,④______(不添加其它字母和輔助線,不必證明);
(2)∠A=30°,CD=,求⊙O的半徑r.

查看答案和解析>>

同步練習冊答案