【題目】計算(1)
(2)
(3)
【答案】(1)2m2﹣4mn﹣3n2;(2)6x2y;(3)18a6
【解析】
(1)根據(jù)完全平方公式和平方差公式進行計算,然后合并同類項,即可得到答案;
(2)先計算積的乘方,然后計算整式乘法和除法,即可得到答案;
(3)先計算乘方,然后計算同底數(shù)冪乘法,再合并同類項,即可得到答案.
解:(1)(2m+n)(2m﹣n)﹣2(m+n)2
=4m2﹣n2﹣2m2﹣4mn﹣2n2
=2m2﹣4mn﹣3n2.
(2)(﹣3x2y)2(6xy3)÷(9x3y4)
=9x4y26xy3÷9x3y4
=54x5y5÷9x3y4
=6x2y;
(3)(2a2)3+(﹣3a3)2+(a2)2a2
=23×(a2)3+(﹣3)2×(a3)2+(a2)2×a2
=8a6+9a6+a6
=(8+9+1)a6
=18a6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接“炎帝故里尋根節(jié)”,某校開展了主題為“炎帝文化知多少”的專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為“非常了解”“比較了解”“基本了解”“不太了解”四個等級,整理調(diào)查數(shù)據(jù)制成了下面的表格和如圖所示的不完整的扇形統(tǒng)計圖.
等級 | 非常了解 | 比較了解 | 基本了解 | 不太了解 |
頻數(shù) | 50 | m | 40 | 20 |
根據(jù)以上提供的信息,解答下列問題:
(1)本次問卷調(diào)查共抽取的學(xué)生人數(shù)為________,表中m的值為________;
(2)計算等級為“非常了解”的頻數(shù)在扇形統(tǒng)計圖中對應(yīng)扇形的圓心角的度數(shù),并補全扇形統(tǒng)計圖;
(3)若該校有學(xué)生1 500人,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中“不太了解”炎帝文化知識的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù))
(1)該函數(shù)的圖像與軸公共點的個數(shù)是( )
A.0 B.1 C.2 D.1或2
(2)求證:不論為何值,該函數(shù)的圖像的頂點都在函數(shù)的圖像上.
(3)當(dāng)時,求該函數(shù)的圖像的頂點縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。
A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一堤壩的坡角∠ABC=60°,坡面長度AB=24米(圖為橫截面).為了使堤壩更加牢固,需要改變堤壩的坡面,為使得坡面的坡角∠ADB=45°,則應(yīng)將堤壩底端向外拓寬(BD)多少米?(結(jié)果精確到0.1米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年的暑假,李剛和他的父母計劃去新疆旅游,他們打算坐飛機到烏魯木齊,第二天租用一輛汽車自駕出游.
根據(jù)以上信息,解答下列問題:
(1)設(shè)租車時間為天,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出,關(guān)于的函數(shù)表達式;
(2)請你幫助李剛,選擇租用哪個公司的車自駕出游比較合算,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于等腰三角形,以下說法正確的是( )
A.有一個角為40°的等腰三角形一定是銳角三角形
B.等腰三角形兩邊上的中線一定相等
C.兩個等腰三角形中,若一腰以及該腰上的高對應(yīng)相等,則這兩個等腰三角形全等
D.等腰三角形兩底角的平分線的交點到三邊距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】趙爽(約公元182~250年),我國歷史上著名的數(shù)學(xué)家與天文學(xué)家,他詳細解釋了《周髀算經(jīng)》中勾股定理,將勾股定理表述為:“勾股各自乘,并之為弦實.開方除之,即弦.”又給出了新的證明方法“趙爽弦圖”,巧妙地利用平面解析幾何面積法證明了勾股定理.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和中間一個小正方形拼成的一個大正方形,如果小正方形的面積為1,直角三角形較長直角邊長為4,則大正方形的面積為_____________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com