若方程x2-
k-1
x-1=0
有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍______.
∵方程x2-
k-1
x-1=0
有兩個(gè)不相等的實(shí)數(shù)根,
∴△>0,且k-1≥0,
即:(-
k-1
2-4×1×(-1)=k-1+4=k+3>0,
且k≥1,
解得:k≥1,
故答案為:k≥1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)1.若方程x2-
k-1
x-1=0
有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍
 

2.如圖,已知四邊形ABCD是邊長(zhǎng)為2的正方形,以對(duì)角線BD為邊作正三角形BDE,過(guò)E作DA的延長(zhǎng)線的垂線EF,垂足為F.
(1)找出圖中與EF相等的線段,并證明你的結(jié)論;
(2)求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題
(1)若方程x2-
k-1
x-1=0
有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍
 

(2)已知3-
2
的整數(shù)部分是a,小數(shù)部分是b,則a+b+
2
b
的值是
 

(3)如圖①,已經(jīng)正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),連接EB,過(guò)點(diǎn)A作AM⊥BE,垂足為M,AM交BD于點(diǎn)F.
①求證:OE=OF.
②如圖②,若點(diǎn)E在AC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交DB的延長(zhǎng)線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明,如果不成立,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2+kx-2=0.
(1)求證:不論k取何值,方程總有兩個(gè)不相等的實(shí)數(shù)根.
(2)若方程x2+kx-2=0的一個(gè)解與方程
x+1x-1
=3
的解相同.
(①求k的值;②求方程x2+kx-2=0的另一個(gè)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若方程x2-
k-1
x-1=0
有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍
k≥1
k≥1

查看答案和解析>>

同步練習(xí)冊(cè)答案