【題目】如圖,一次函數(shù)的圖象和反比例函數(shù)的圖象相交于兩點.
(1)試確定一次函數(shù)與反比例函數(shù)的解析式;
(2)求的面積;
(3)結合圖象,直接寫出使成立的的取值范圍.
【答案】(1)反比例函數(shù)的解析式為,一次函數(shù)的解析式為;(2)8;(3)或.
【解析】
(1)將點A代入反比例函數(shù)中求出反比例函數(shù)的解析式,再根據反比例函數(shù)求出點B的坐標,最后將A和B的坐標代入一次函數(shù)解析式中求出一次函數(shù)的解析式;
(2)求出一次函數(shù)與x軸的交點坐標,再利用割補法得到,即可得出答案;
(3)根據圖像判斷即可得出答案.
解:(1)∵在反比例函數(shù)的圖象上,
∴,
則反比例函數(shù)的解析式為.
將代入,得,
∴.
將兩點的坐標分別代入,得
解得
則一次函數(shù)的解析式為.
(2)設一次函數(shù)的圖象與軸的交點為.
在中,令,得,
∴,即,
則.
(3)∵
即一次函數(shù)的圖像在反比例函數(shù)的圖像的上方
∴或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.
(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為 ;
(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數(shù)字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】岳陽市整治農村“空心房”新模式,獲評全國改革開放40年地方改革創(chuàng)新40案例.據了解,我市某地區(qū)對轄區(qū)內“空心房”進行整治,騰退土地1200公頃用于復耕和改造,其中復耕土地面積比改造土地面積多600公頃.
(1)求復耕土地和改造土地面積各為多少公頃;
(2)該地區(qū)對需改造的土地進行合理規(guī)劃,因地制宜建設若干花卉園和休閑小廣場,要求休閑小廣場總面積不超過花卉園總面積的,求休閑小廣場的總面積最多為多少公頃.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點C,連接OF,若∠AOF=40°,則∠F的度數(shù)是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/s秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動,點P運動到F點時停止運動,點Q也同時停止運動,當點P運動__秒時,以P、Q、E、F為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,拋物線的頂點坐標為,并與軸交于點,點是對稱軸與軸的交點.
(1)求拋物線的解析式;
(2)如圖①所示, 是拋物線上的一個動點,且位于第一象限,連結BP、AP,求的面積的最大值;
(3)如圖②所示,在對稱軸的右側作交拋物線于點,求出點的坐標;并探究:在軸上是否存在點,使?若存在,求點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線與軸交于點、兩點(點在點的左側),與軸交于點.
(1)如圖1,若點是直線上方拋物線上的一個動點,過點作軸交直線于點,作于點,點為直線上一動點,點為軸上一動點,連接,.當最長時,求的最小值;
(2)如圖2,將繞點逆時針旋轉得,將沿直線平移得到,直線與軸交于點,連接,將 沿邊翻折得 ,連接, ,當是等腰三角形時,求此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=2AB.將矩形ABCD對折,得到折痕MN,沿著CM折疊,點D的對應點為E,ME與BC的交點為F;再沿著MP折疊,使得AM與EM重合,折痕為MP,此時點B的對應點為G.下列結論:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若連接PE,則△PEG∽△CMD.其中正確的個數(shù)為( 。
A.5個B.4個C.3個D.2個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com