如圖,在8×12的方格紙中有△ABC,請按要求作圖:
(1)畫出△ABC右平移3個(gè)單位,再上平移2個(gè)單位后得到的圖形△A1B1C1;
(2)畫出△A1B1C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°后得到的圖形△A2B2C1.




解:(1)如圖所示,△A1B1C1即為所要求作的三角形;
(2)如圖所示,△A2B2C1即為所要求作的三角形.

分析:(1)先確定出點(diǎn)A、B、C兩次平移后的對應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可;
(2)分別找出點(diǎn)A1、B1、C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°后的對應(yīng)點(diǎn)A2、B2、C2的位置,然后順次連接即可.
點(diǎn)評:本題主要考查了利用平移變換與旋轉(zhuǎn)變換作圖,根據(jù)網(wǎng)格找出變換后的對應(yīng)點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在一次海上聯(lián)合作戰(zhàn)演習(xí)中,紅方一艘偵察艇在A處發(fā)現(xiàn)在其北偏東30°方向,相距12海里的B處水面上,有藍(lán)方一艘小艇正以每小時(shí)8海里的速度沿南偏東75°方向前進(jìn).若偵察艇以每小時(shí)16海里的速度,沿北偏東60°方向攔截藍(lán)方的小艇.試問能否成功攔截?(
3
≈1.7,
2
≈1.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)游戲題
(1)如圖是一個(gè)三階幻方,有9個(gè)數(shù)字構(gòu)成,并且每橫行,豎行和對角線上的3個(gè)數(shù)字的和都相等,試填出空格中的數(shù).
(2)有一種“二十四點(diǎn)”的游戲(即算24游戲),其游戲規(guī)則是這樣的:任取四個(gè)1至13之間的自然數(shù),將這四個(gè)數(shù)(每個(gè)數(shù)用且只能用一次)進(jìn)行加減乘除四則運(yùn)算,使其結(jié)果等于24.例如對1,2,3,4,可作如下運(yùn)算:(1+2+3)×4=24(上述運(yùn)算與4×(1+2+3)視為相同方法的運(yùn)算)
①給出有理數(shù)4,6,9,12;請你寫出一個(gè)算式使其結(jié)果為24.
②在我們學(xué)過負(fù)數(shù)以后這個(gè)游戲仍可以玩,如-2,-3,4,5可以列出算式-2×(-3-4-5)=24;現(xiàn)給出3,-5,6,-8四個(gè)數(shù),請你寫出一個(gè)算式使其結(jié)果為24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(本題12分)閱讀材料:如圖1,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部的線段的長度叫△ABC的“鉛垂高”(h).我們可行出生種計(jì)算三角形面積的新方示:,即三角形面積等于水平寬與鉛垂高乘積的一半.

 

解答下列問題:

如圖2,拋物線頂點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.

(1)求拋物線和直線AB的解析式;

(2)求△ABC的鉛垂高CD及SABC

(3)設(shè)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使,

 

若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(本題12分)閱讀材料:如圖1,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部的線段的長度叫△ABC的“鉛垂高”(h).我們可行出生種計(jì)算三角形面積的新方示:,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)求△ABC的鉛垂高CD及SABC
(3)設(shè)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使
若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆河南省三門峽中考一模數(shù)學(xué)試卷 題型:解答題

(本題12分)閱讀材料:如圖1,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部的線段的長度叫△ABC的“鉛垂高”(h).我們可行出生種計(jì)算三角形面積的新方示:,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)求△ABC的鉛垂高CD及SABC
(3)設(shè)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使
若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案