如圖1,長方形ABCD中,動點P從點B出發(fā),沿BC,CD運動至點D停止.設點P運動的路程為,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則△BCD的面積是(     )

A.3B.4C.5D.6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在長方形ABCD(對邊相等,四角都是直角)中,將△ABC沿AC對折至△AEC位置,CE與AD交精英家教網(wǎng)于點F.
(1)求證:△AFC是等腰三角形;
(2)若∠ACB=30°,BC=12cm,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、如圖,將長方形ABCD沿對角線AC剪開,得到兩個三角形為△ABC和△DEF.若將△DEF經(jīng)過不同的變換,使得△ABC和△DEF有一條邊重合,這樣得到的不同的三角形有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學過的特殊四邊形中是勾股四邊形的兩種圖形的名稱
長方形
長方形
,
正方形
正方形
;
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你直接寫出所有以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB的頂點M的坐標;
(3)如圖2,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°,得到△DBE,連結(jié)AD,DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應用
(1)已知:多項式M=2a2-a+1,N=a2-2a.試比較M與N的大小.
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上.
①這樣的長方形可以畫
3
3
個;
②所畫的長方形中哪個周長最小?為什么?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,把長方形ABCD(AB=CD,AD=BC,∠A=∠ABC=∠C=∠CDA=90°)沿對角線BD對折,使點C落在點C,處,請說明AE=C′E.

查看答案和解析>>

同步練習冊答案