(2012•常州模擬)如圖,矩形ABCD中,AB=6,BC=3.點(diǎn)E在線段BA上從B點(diǎn)以每秒1個單位的速度出發(fā)向A點(diǎn)運(yùn)動,F(xiàn)是射線CD上一動點(diǎn),在點(diǎn)E、F運(yùn)動的過程中始終保持EF=5,且CF>BE,點(diǎn)P是EF的中點(diǎn),連接AP.設(shè)點(diǎn)E運(yùn)動時間為ts.
(1)在點(diǎn)E、F運(yùn)動的過程中,AP的長度存在一個最小值,當(dāng)AP的長度取得最小值時,點(diǎn)P的位置應(yīng)該在
AD的中點(diǎn)
AD的中點(diǎn)

(2)當(dāng)AP⊥EF時,求出此時t的值
(3)以P為圓心作⊙P,當(dāng)⊙P與矩形ABCD三邊所在直線都相切時,求出此時t的值,并指出此時⊙P的半徑長.
分析:(1)在點(diǎn)E、F運(yùn)動的過程中,AP的長度存在一個最小值,當(dāng)AP的長度取得最小值時,點(diǎn)P的位置應(yīng)該在AD的中點(diǎn),理由為:由P為EF的中點(diǎn)得到一對邊相等,再由一對直角相等及一對對頂角相等,利用AAS可得出三角形AEP與三角形DFP全等,利用全等三角形的對應(yīng)邊相等得到AP=DP,則此時P為AD的中點(diǎn);
(2)首先過點(diǎn)E作EG⊥CD于點(diǎn)G,易證得△APE∽△EGF,然后由相似三角形的對應(yīng)邊成比例,求得AE的長,繼而求得答案;
(3)分兩種情況考慮:當(dāng)⊙P在矩形ABCD內(nèi)分別與AB、AD、CD相切于點(diǎn)Q、R、N時,連接PQ,PR,PN,如圖3所示,可得出四邊形AQPR和四邊形RPND為兩個全等的正方形,其邊長為大正方形邊長的一半,在直角三角形PQE中,由PE與PQ的長,利用勾股定理求出EQ的長,進(jìn)而由BA+AQ-EQ求出BE的長,即為t的值,并求出此時⊙P的半徑;當(dāng)⊙P在矩形ABCD外分別與射線BA、AD、射線CD相切于點(diǎn)Q、R、N時,如圖4所示,同理求出BE的長,即為t的值,并求出此時⊙P的半徑.
解答:解:(1)在點(diǎn)E、F運(yùn)動的過程中,AP的長度存在一個最小值,當(dāng)AP的長度取得最小值時,如圖所示,
∵P為EF的中點(diǎn),
∴EP=FP,
∵四邊形ABCD為矩形,
∴∠A=∠PDF=90°,
在△AEP和△DFP中,
∠A=∠PDF=90°
 ∠APE=∠DPF 
EP=FP 
,
∴△AEP≌△DFP(AAS),
∴AP=DP,
則此時P為AD的中點(diǎn);
故答案為:AD的中點(diǎn);

(2)過點(diǎn)E作EG⊥CD于點(diǎn)G,
則四邊形BCGE是矩形,
∴EG=BC=3,AB∥CD,
∴FG=
EF2-EG2
=4,∠AEP=∠EFG
∵AP⊥EF,
∴∠APE=∠EGF=90°,
∴△APE∽△EGF,
AE
EF
=
EP
GF

AE
5
=
5
2
4
,
解得:AE=
25
8
,
∴BE=AB-AE=6-
25
8
=
23
8

∴t=
23
8
;

(3)如圖3,當(dāng)⊙P在矩形ABCD內(nèi)分別與AB、AD、CD相切于點(diǎn)Q、R、N時,
連接PQ、PR、PN,則PQ⊥AB、PR⊥AD、PN⊥CD,
則四邊形AQPR與四邊形RPND為兩個全等的正方形,
∴PQ=AQ=AR=DR=
1
2
AD=
3
2
,
在Rt△PQE中,EP=
5
2
,由勾股定理可得:EQ=2,
∴BE=BA-EQ-AQ=6-2-
3
2
=
5
2
,
∴t=
5
2
,此時⊙P的半徑為
3
2
;
如圖4,當(dāng)⊙P在矩形ABCD外分別與射線BA、AD、射線CD相切于點(diǎn)Q、R、N時,
類比圖3可得,EQ=2,AQ=
3
2

∴BE=BA+AQ-EQ=6+
3
2
-2=
11
2

∴t=
11
2
,此時⊙P的半徑為
3
2
點(diǎn)評:此題考查了圓綜合題,涉及的知識有:正方形的判定與性質(zhì),切線的性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)以及勾股定理.此題綜合性較強(qiáng),難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想、轉(zhuǎn)化及分類討論的思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•常州模擬)已知扇形的半徑為6cm,扇形的弧長為πcm,則該扇形的面積是
cm2,扇形的圓心角為
30
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•常州模擬)下列計算正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•常州模擬)如圖,在平面直角坐標(biāo)系中,對△ABC進(jìn)行循環(huán)往復(fù)的軸對稱或中心對稱變換,若原來點(diǎn)A坐標(biāo)是(a,b),則經(jīng)過第2012次變換后所得的A點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•常州模擬)計算:-(-6)=
6
6
;(-3)0=
1
1
;(-5)-1=
-
1
5
-
1
5
;9的平方根為
±3
±3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•常州模擬)計算:(a-b)(b+a)=
a2-b2
a2-b2
;分解因式:x3-9x=
x(x+3)(x-3)
x(x+3)(x-3)

查看答案和解析>>

同步練習(xí)冊答案