【題目】能判定一個(gè)四邊形是菱形的條件是( )
A.對(duì)角線互相平分且相等
B.對(duì)角線互相垂直且相等
C.對(duì)角線互相垂直且對(duì)角相等
D.對(duì)角線互相垂直,且一條對(duì)角線平分一組對(duì)角

【答案】C
【解析】∵對(duì)角線互相垂直平分的四邊形是菱形,∴A、B、D都不正確;∵對(duì)角相等的四邊形是平行四邊形,而對(duì)角線互相垂直的四邊形是菱形,∴C正確.故答案為:C.根據(jù)兩組對(duì)角相等的四邊形是平行四邊形和對(duì)角線互相垂直的平行四邊形是菱形可知C正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.

(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);

(2)作△BED的邊BD邊上的高;

(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016浙江省舟山市第23題)我們定義:有一組鄰角相等的凸四邊形叫做等鄰角四邊形

(1)概念理解:

請(qǐng)你根據(jù)上述定義舉一個(gè)等鄰角四邊形的例子;

(2)問(wèn)題探究;

如圖1,在等鄰角四邊形ABCD中,DAB=ABC,AD,BC的中垂線恰好交于AB邊上一點(diǎn)P,連結(jié)AC,BD,試探究AC與BD的數(shù)量關(guān)系,并說(shuō)明理由;

(3)應(yīng)用拓展;

如圖2,在RtABC與RtABD中,C=D=90°,BC=BD=3,AB=5,將RtABD繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0°∠αBAC)得到RtABD(如圖3),當(dāng)凸四邊形ADBC為等鄰角四邊形時(shí),求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016重慶市第23題)近期豬肉價(jià)格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場(chǎng)豬肉的平均價(jià)格達(dá)到一定的單價(jià)時(shí),政府將投入儲(chǔ)備豬肉以平抑豬肉價(jià)格.

(1)從今年年初至5月20日,豬肉價(jià)格不斷走高,5月20日比年初價(jià)格上漲了60%,某市民在今年5月20日購(gòu)買(mǎi)2.5千克豬肉至少要花100元錢(qián),那么今年年初豬肉的最低價(jià)格為每千克多少元?

(2)5月20日豬肉價(jià)格為每千克40元,5月21日,某市決定投入儲(chǔ)備豬肉,并規(guī)定其銷(xiāo)售價(jià)格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價(jià)出售一批儲(chǔ)備豬肉,該超市在非儲(chǔ)備豬肉的價(jià)格仍為40元的情況下,該天的兩種豬肉總銷(xiāo)量比5月20日增加了a%,且儲(chǔ)備豬肉的銷(xiāo)量占總銷(xiāo)量的,兩種豬肉銷(xiāo)售的總金額比5月20日提高了,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yx24x+8的頂點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,在四邊形ABCD中,AB=AD,B=D=90°,E、F分別是邊BCCD上的點(diǎn),且EAF=BAD求證:EF=BE+FD

2)如圖,在四邊形ABCD中,AB=AD,B+D=180°,EF分別是邊BC、CD上的點(diǎn),且EAF=BAD,(1)中的結(jié)論是否仍然成立?

3)如圖,在四邊形ABCD中,AB=ADB+ADC=180°,E、F分別是邊BCCD延長(zhǎng)線上的點(diǎn),且EAF=BAD,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一張課桌包括1塊桌面和4條桌腿,1m3木料可制作50塊桌面或200條桌腿.現(xiàn)有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿剛好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.

1)求證:△ABE≌△CAD

2)求∠PBQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=﹣2x+125的最大值是( 。

A. 1 B. 1 C. 5 D. 5

查看答案和解析>>

同步練習(xí)冊(cè)答案