如圖,PA,PB分別是⊙O的切線,A,B為切點(diǎn),AC是⊙O的直徑,已知∠BAC=35°,∠P的度數(shù)為   
【答案】分析:由等腰三角形的性質(zhì)得,∠BOA=110°,再根據(jù)切線的性質(zhì)和四邊形的內(nèi)角和定理求得∠P.
解答:解:∵OA=OB,
∴∠OAB=∠OBA,
∵∠BAC=35°,
∴∠AOB=110°,
∵PA,PB分別是⊙O的切線,
∴∠PAO=∠PBO=90°,
∵∠P+∠AOB+∠PAO+∠PBO=360°,
∴∠P=70°.
故答案為:70°.
點(diǎn)評:本題考查了切線長定理和等腰三角形的性質(zhì),以及四邊形的內(nèi)角和定理,是基礎(chǔ)知識(shí)要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,PA、PB分別切圓O于A、B兩點(diǎn),C為劣弧AB上一點(diǎn),已知∠P=50°,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,PA、PB分別切圓O于A、B兩點(diǎn),C為劣弧AB上一點(diǎn),∠APB=30°,則∠ACB=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,PA,PB分別切⊙O于點(diǎn)A,B,點(diǎn)C是AB上一點(diǎn),過C作⊙O的切線,交PA,PB于點(diǎn)D,E,若PA=6cm,則△PDE的周長是
12
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綿陽)如圖,PA、PB分別切⊙O于A、B,連接PO、AB相交于D,C是⊙O上一點(diǎn),∠C=60°.
(1)求∠APB的大小;
(2)若PO=20cm,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,PA,PB分別切⊙O于點(diǎn)A和點(diǎn)B,C是
AB
上任一點(diǎn),過C的切線分別交PA,PB于D,E.若⊙O的半徑為6,PO=10,則△PDE的周長是(  )

查看答案和解析>>

同步練習(xí)冊答案