【題目】如圖,正方形的邊長是4,的平分線交于點,若點、分別是和上的動點,則的最小值是__________.
【答案】
【解析】
過作的垂線交于F,交AC于D′,再過D′作D′P′⊥AD,由角平分線的性質可得出D′是D關于AE的對稱點,進而可知D′P′即為DQ+PQ的最小值.
解:過作的垂線交于F,交AC于D′,再過D′作D′P′⊥AD,如下圖,
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵AF=AF,∠DAE=∠CAE,
∴△DAF≌△D′AF,
∴D′是D關于AE的對稱點,AD′=AD=4,
∴D′P′即為DQ+PQ的最小值,
∵四邊形ABCD是正方形,
∴∠DAD′=45°,
∴AP′=P′D′,
在Rt△AP′D′中,
P′D′2+AP′2=AD′2,AD′2=16,
∵AP′=P′D',
2P′D′2=AD′2,即2P′D′2=16,
∴P′D′=,
即的最小值是.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當直線l與x軸所成銳角為30°,且r1=1時,r2018=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AB=3,AC=4,BC=5,分別以AB、AC、BC為邊在BC的同側作等邊△ABD,等邊△ACE、等邊△BCF.
(1)求證:四邊形DAEF是平行四邊形;
(2)求四邊形DAEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,AB=AC,∠ABC =,D是BC邊上一點,以AD為邊作,使AE=AD,+=180°.
(1)直接寫出∠ADE的度數(shù)(用含的式子表示);
(2)以AB,AE為邊作平行四邊形ABFE,
①如圖2,若點F恰好落在DE上,求證:BD=CD;
②如圖3,若點F恰好落在BC上,求證:BD=CF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BC相交于點N.連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學三班同學們就該校學生如何到校問題進行了一次調查,并將調查結果制成了條形圖和扇形統(tǒng)計圖,請你根據(jù)圖表信息完成下列各題:
(1)此次共調查了___________位學生.
(2)請將條形統(tǒng)計圖補充完整.
(3)這個學校有1000名學生,估計坐公交車的人有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,完全相同的兩個菱形ABCD和ECGF的頂點C重合,∠B=∠F,點E恰好在邊AD上,延長ED交FG于點H.
(1)求證:∠B=∠ECB;
(2)連接BE、CH.
①試判斷四邊形BEHC的形狀,并說理理由;
②求證:CH平分∠DCG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】商場某柜臺銷售每臺進價分別為160元、120元的A.B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進價、售價均保持不變,利潤=銷售收入進貨成本)
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若商場準備用不多于7500元的金額再采購這兩種型號的電風扇共50臺,請問商場銷售完這50臺電風扇能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com