【題目】如圖(1),點(diǎn)E是線段BC的中點(diǎn)分別以B,C為直角頂點(diǎn)的△EAB和△EDC均是等腰直角三角形,且在BC的同側(cè)

(1)AEED的數(shù)量關(guān)系為________,AEED的位置關(guān)系為________;

(2)在圖(2),以點(diǎn)E為位似中心作△EGF與△EAB位似,點(diǎn)HBC所在直線上的一點(diǎn)連接GH,HD,分別得到了圖(2)和圖(3).

①在圖(2),點(diǎn)FBE,△EGF與△EAB的相似比是1∶2,HEC的中點(diǎn)

求證GH=HD,GHHD

②在圖(3),點(diǎn)FBE的延長(zhǎng)線上,△EGF與△EAB的相似比是k∶1,BC=2,請(qǐng)直接寫(xiě)出CH的長(zhǎng)為多少時(shí),恰好使得GH=HDGHHD用含k的代數(shù)式表示).

【答案】(1)AE=ED,AEED;(2)①證明見(jiàn)解析;②CH的長(zhǎng)為k

【解析】

(1)利用等腰直角三角形的性質(zhì)得出△ABE≌△DCE,進(jìn)而得出AE=ED,AE⊥ED;

(2)①根據(jù)△EGF與△EAB的相似比1:2,得出EH=HC=EC,進(jìn)而得出△HGF≌△DHC,即可求出GH=HD,GH⊥HD;

②根據(jù)恰好使GH=HDGH⊥HD時(shí),得出△GFH≌△HCD,進(jìn)而得出CH的長(zhǎng).

(1)∵點(diǎn)E是線段BC的中點(diǎn),分別BC以為直角頂點(diǎn)的△EAB和△EDC均是等腰三角形,
∴BE=EC=DC=AB,∠B=∠C=90°,
∴△ABE≌△DCE,
∴AE=DE,
∠AEB=∠DEC=45°,
∴∠AED=90°,
∴AE⊥ED.
故答案為:AE=ED,AE⊥ED;

(2)①由題意,∠B=∠C=90°,AB=BE=EC=DC,
∵△EGF與△EAB的相似比1:2,
∴∠GFE=∠B=90°,GF=AB,EF=EB,
∴∠GFE=∠C,
∴EH=HC=EC,
∴GF=HC,F(xiàn)H=FE+EH=EB+EC=BC=EC=CD,
∴△HGF≌△DHC.
∴GH=HD,∠GHF=∠HDC.
∵∠HDC+∠DHC=90°.
∴∠GHF+∠DHC=90°
∴∠GHD=90°.
∴GH⊥HD.

②根據(jù)題意得出:∵當(dāng)GH=HD,GH⊥HD時(shí),
∴∠FHG+∠DHC=90°,
∵∠FHG+∠FGH=90°,
∴∠FGH=∠DHC,
,
∴△GFH≌△HCD,
∴CH=FG,
∵EF=FG,
∴EF=CH,
∵△EGF與△EAB的相似比是k:1,BC=2,
∴BE=EC=1,
∴EF=k,
∴CH的長(zhǎng)為k.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長(zhǎng)為( 。

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是反比例函數(shù)y=圖象上一點(diǎn),PM∥x軸交y軸于點(diǎn)M,MP=2,點(diǎn)Q的坐標(biāo)為(4,0),連接PO、PQ,△OPM的面積為3,求該反比例函數(shù)的表達(dá)式是△OPQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx與雙曲線y (k0)交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.

(1)k的值;

(2)若雙曲線y (k0)上一點(diǎn)C的縱坐標(biāo)為8,求AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為支援災(zāi)區(qū),某校愛(ài)心活動(dòng)小組準(zhǔn)備用籌集的資金購(gòu)買(mǎi)AB兩種型號(hào)的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購(gòu)買(mǎi)B型學(xué)習(xí)用品的件數(shù)與用120元購(gòu)買(mǎi)A型學(xué)習(xí)用品的件數(shù)相同.

1)求A、B兩種學(xué)習(xí)用品的單價(jià)各是多少元?

2)若購(gòu)買(mǎi)這批學(xué)習(xí)用品的費(fèi)用不超過(guò)28000元,則最多購(gòu)買(mǎi)B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某同學(xué)想測(cè)量旗桿的高度,他在某一時(shí)刻測(cè)得1米長(zhǎng)的竹竿豎直放置時(shí)影長(zhǎng)為1.5,在同一時(shí)刻測(cè)量旗桿的影長(zhǎng)時(shí),因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測(cè)得落在地面上的影長(zhǎng)為21,落在墻上的影高為6,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物BC頂部有一旗桿AB,且點(diǎn)A、B、C在同一條直線上,小紅在D處觀測(cè)旗桿頂部A的仰角為47°,觀測(cè)旗桿底部B的仰角為42°已知點(diǎn)D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).(參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,我們把橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做整點(diǎn).已知反比例函數(shù)y=(m<0)與y=x2﹣4在第四象限內(nèi)圍成的封閉圖形(包括邊界)內(nèi)的整點(diǎn)的個(gè)數(shù)為2,則實(shí)數(shù)m的取值范圍為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2bx3的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)C、D是拋物線上的一對(duì)對(duì)稱(chēng)點(diǎn)

1】求拋物線的解析式

2】求點(diǎn)D的坐標(biāo),并在圖中畫(huà)出直線BD

3】求出直線BD的一次函數(shù)解析式,并根據(jù)圖象回答:當(dāng)x滿(mǎn)足什么條件時(shí),上述二次函數(shù)的值大于該一次函數(shù)的值

查看答案和解析>>

同步練習(xí)冊(cè)答案