如圖所示,已知AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).試說明:AD垂直平分EF.
【答案】分析:先利用角平分線性質(zhì)得出DE=DF;再證△AED≌△AFD,易證AD垂直平分EF.
解答:證明:∵AD是△ABC的角平分線,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△ADE和Rt△ADF中,

∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF,又DE=DF,
∴AD垂直平分EF(到線段兩端點(diǎn)的距離相等的點(diǎn)一定在線段的垂直平分線上).
點(diǎn)評(píng):本題涉及角平分線性質(zhì)和全等三角形知識(shí),難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知AD是等腰△ABC底邊上的高,且tan∠B=
3
4
,AC上有一點(diǎn)E,滿足AE:CE=2:3,則tan∠ADE的值是(  )
A、
3
5
B、
8
9
C、
4
5
D、
7
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖所示,已知AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).試說明:AD垂直平分EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖所示,已知AD是△ABC的角平分線,DE∥AC交AB于點(diǎn)E,DF∥AB交AC于點(diǎn)F,
求證:AD⊥EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖所示,已知AD是△ABC的中線,CE是△ACD的中線,S△ACE=4cm2,則S△ABC=
16
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知AD是△ABC的中線,在AD及延長線上截取DE=DF,連接CE,BF.
求證:BF∥CE.

查看答案和解析>>

同步練習(xí)冊(cè)答案