【題目】為維護(hù)南海主權(quán),我海軍艦艇加強(qiáng)對南海海域的巡航,日上午時(shí),我海巡號艦艇在觀察點(diǎn)處觀測到其正東方向海里處有一燈塔,該艦艇沿南偏東的方向航行,時(shí)到達(dá)觀察點(diǎn),測得燈塔位于其北偏西方向,求該艦艇的巡航速度?(結(jié)果保留整數(shù))

(參考數(shù)據(jù):,

【答案】該艦艇的巡航速度約為海里/時(shí).

【解析】

過點(diǎn)SSCAB,C為垂足.先解RtACS,由∠CAS=45°,AS=80,得出SC=AC=80.再解RtBCS,由∠CBS=45°-15°=30°,得出BC=80,那么AB=AC+BC=80+80,然后根據(jù)速度=路程÷時(shí)間即可求出該艦艇的巡航速度.

過點(diǎn)SSCAB,C為垂足,

∵在RtACS中,∠CAS=45°,AS=80,

SC=AC=80,

∵在RtBCS中,∠CBS=45°-15°=30°,

BC=80,

AB=AC+BC=80+80,

∴該艦艇的巡航速度是(80+80)÷(11-9)=40+40≈109(海里/時(shí)).

答:該艦艇的巡航速度約為109海里/時(shí).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表

分組

頻數(shù)

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

請根據(jù)圖表中所提供的信息,完成下列問題:

(1)表中a=   ,b=   ,樣本成績的中位數(shù)落在   范圍內(nèi);

(2)請把頻數(shù)分布直方圖補(bǔ)充完整;

(3)該校九年級共有1000名學(xué)生,估計(jì)該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,,,將繞著點(diǎn)旋轉(zhuǎn)一定的角度,得到.

(1)若點(diǎn)邊上中點(diǎn),連接,則線段的范圍為________.

(2)如圖,當(dāng)直角頂點(diǎn)邊上時(shí),延長,交邊于點(diǎn),請問線段、、具有怎樣的數(shù)量關(guān)系,請寫出探索過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知CFABC的外角∠ACE的角平分線,DCF上一點(diǎn),且DADB

1)求證:∠ACB=∠ADB;

2)求證:AC+BC2BD;

3)如圖2,若∠ECF60°,證明:ACBC+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸相交于、兩點(diǎn)(其中為坐標(biāo)原點(diǎn)),過點(diǎn)作直線軸于點(diǎn),交拋物線于點(diǎn),點(diǎn)關(guān)于拋物線對稱軸的對稱點(diǎn)為(其中、不重合),連接軸于點(diǎn),連接

(1)時(shí),求拋物線的解析式和的長;

如圖時(shí),若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)M是弧CBD 上任意一點(diǎn),AH=2,CH=4.

(1)求⊙O 的半徑r 的長度;

(2)求sin∠CMD;

(3)直線BM交直線CD于點(diǎn)E,直線MH交⊙O 于點(diǎn) N,連接BNCE于點(diǎn) F,求HEHF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC,AD的中點(diǎn),連接AE、CF.

(1)求證:四邊形AECF是矩形;

(2)若AB=2,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AB5cmBC13cm,點(diǎn)D在線段AC上,且CD7cm,動(dòng)點(diǎn)P從距B點(diǎn)15cmE點(diǎn)出發(fā),以每秒2cm的速度沿射線EA的方向運(yùn)動(dòng),時(shí)間為t秒.

1)求AD的長.

2)用含有t的代數(shù)式表示AP的長.

3)在運(yùn)動(dòng)過程中,是否存在某個(gè)時(shí)刻,使△ABC與△ADP全等?若存在,請求出t值;若不存在,請說明理由.

4)直接寫出t______秒時(shí),△PBC為等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案