【題目】計算。
(1)解方程:y2﹣7y+10=0
(2)計算:( 2﹣|﹣1+ |+2sin60°+(1﹣ 0

【答案】
(1)解:∵(y﹣2)(y﹣5)=0,

∴y﹣2=0或y﹣5=0,

解得:y=2或y=5


(2)解:原式=4﹣( ﹣1)+2× +1

=4﹣ +1+ +1

=6.


【解析】(1)因式分解法求解可得;(2)根據(jù)實數(shù)的混合運算順序和法則計算可得.
【考點精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識點,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,AC=2
(1)利用尺規(guī)作線段AC的垂直平分線DE,垂足為E,交AB于點D,(保留作圖痕跡,不寫作法)
(2)若△ADE的周長為a,先化簡T=(a+1)2﹣a(a﹣1),再求T的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知拋物線y=x2+2mx﹣n與x軸沒有交點,則m+n的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人都從A出發(fā)經(jīng)B地去C地,乙比甲晚出發(fā)1分鐘,兩人同時到達B地,甲在B地停留1分鐘,乙在B地停留2分鐘,他們行走的路程y(米)與甲行走的時間x(分鐘)之間的函數(shù)關(guān)系如圖所示,則下列說法中正確的個數(shù)有( ) ①甲到B地前的速度為100m/min
②乙從B地出發(fā)后的速度為300m/min
③A、C兩地間的路程為1000m
④甲乙再次相遇時距離C地300km.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,直徑AF平分∠BAC,交BC于點D.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長BA到點E,連接ED、EC,ED交AC于點G,且ED=EC,求證:∠EGC=∠ECA+2∠ACB;
(3)如圖3,在(2)的條件下,當BC是⊙O的直徑時,取DC的中點M,連接AM并延長交圓于點N,且EG=5,連接CN并求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y1=﹣x+4的圖象與函數(shù)y2= (x>0)的圖象交于A(m,1),B(1,n)兩點.
(1)求k,m,n的值;
(2)利用圖象寫出當x≥1時,y1和y2的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A、B兩種園藝造型共50個,擺放在迎賓大道兩側(cè).已知搭配一個A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個B種造型需甲種花卉5盆,乙種花卉9盆.
(1)某校九年級某班課外活動小組承接了這個園藝造型搭配方案的設(shè)計,問符合題意的搭配方案有幾種?請你幫助設(shè)計出來;
(2)若搭配一個A種造型的成本是200元,搭配一個B種造型的成本是360元,試說明(1)中哪種方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x1 , x2是關(guān)于x的一元二次方程x2﹣mx+m﹣2=0的兩個實數(shù)根,是否存在實數(shù)m使 + =0成立?則正確的結(jié)論是(
A.m=0時成立
B.m=2時成立
C.m=0或2時成立
D.不存在

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式2x﹣3< ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

同步練習(xí)冊答案