⊙O表示一圓形紙板,通過多次剪裁,可把它剪成若干個扇形面.操作過程是第1次將圓形紙板剪裁分成4個相等的扇形;第2次將其中的一個扇形面再等分剪裁成4個小的扇形;第3次將其中的一個小的扇形再等分剪裁成4個更小的扇形.以后依次如此剪裁下去.
(1)請用尺規(guī)在⊙O中作出第2次剪裁后得到的7個扇形(保留痕跡,不寫作法);
(2)請通過如此操作和猜想,將第3次、第4次和第n次裁剪后所得扇形的總個數(shù)(s)填入下表:
等分圓及扇形面的次數(shù)(n) 1 2 3 4 n
所得扇形的總個數(shù)(s) 4 7
10
10
13
13
n+3
n+3
(3)請推斷,能否按上述操作過程,將原來的圓形紙板剪裁成33個扇形?為什么?
分析:(1)根據(jù)要求畫出圖形即可;
(2)不難發(fā)現(xiàn):在4的基礎(chǔ)上依次多3個.則第n次的時候,有4+3(n-1)=3n+1;
(3)根據(jù)(2)中的規(guī)律,得3n+1=33,n不是自然數(shù),則不能.
解答:解:(1)如圖,


(2)7+3=10,10+3=13,13+4=17,…7+3(n-1)=3n+1;
等分圓及扇形面的次數(shù)(n)   4
 所得扇形的總個數(shù)(s)  4  7 10  13   …  3n+1
(3)當(dāng)3n+1=33,即n=
32
3
時,因為n不是自然數(shù),不能剪成.
點評:此題考查了圓的綜合題,解題時,要能夠用尺規(guī)作圖,還要特別注意:每一次剪的時候,都是在上一次中的一個中進行,所以每一次只多了3個.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,⊙O表示一圓形紙板,根據(jù)要求,需通過多次剪裁,把它剪成若干個扇形面.操作過程如下:第1次剪裁,將圓形紙板等分為4個扇形;第2次剪裁,將上次得到的扇形面中的一個再等分成4個扇形;以后按第2次剪裁的作法進行下去.
(1)請你在⊙O中,用尺規(guī)作出第2次剪裁后得到的7個扇形(保留痕跡,不寫作法)
(2)請你通過操作和猜想,將第3、第4和第n次裁剪后所得扇形的總個數(shù)(s)填入下表.
等分圓及扇形面的次數(shù)(n) 1 2 3 4 n
所得扇形的總個數(shù)(S) 4 7
(3)請你推斷,能不能按上述操作過程,將原來的圓形紙板剪成33個扇形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年5月中考數(shù)學(xué)模擬試卷(41)(解析版) 題型:解答題

如圖,⊙O表示一圓形紙板,根據(jù)要求,需通過多次剪裁,把它剪成若干個扇形面.操作過程如下:第1次剪裁,將圓形紙板等分為4個扇形;第2次剪裁,將上次得到的扇形面中的一個再等分成4個扇形;以后按第2次剪裁的作法進行下去.
(1)請你在⊙O中,用尺規(guī)作出第2次剪裁后得到的7個扇形(保留痕跡,不寫作法)
(2)請你通過操作和猜想,將第3、第4和第n次裁剪后所得扇形的總個數(shù)(s)填入下表.
等分圓及扇形面的次數(shù)(n)1234n
所得扇形的總個數(shù)(S)47
(3)請你推斷,能不能按上述操作過程,將原來的圓形紙板剪成33個扇形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年貴州省貴陽市烏當(dāng)二中中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖,⊙O表示一圓形紙板,根據(jù)要求,需通過多次剪裁,把它剪成若干個扇形面.操作過程如下:第1次剪裁,將圓形紙板等分為4個扇形;第2次剪裁,將上次得到的扇形面中的一個再等分成4個扇形;以后按第2次剪裁的作法進行下去.
(1)請你在⊙O中,用尺規(guī)作出第2次剪裁后得到的7個扇形(保留痕跡,不寫作法)
(2)請你通過操作和猜想,將第3、第4和第n次裁剪后所得扇形的總個數(shù)(s)填入下表.
等分圓及扇形面的次數(shù)(n)1234n
所得扇形的總個數(shù)(S)47
(3)請你推斷,能不能按上述操作過程,將原來的圓形紙板剪成33個扇形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2002•濟南)如圖,⊙O表示一圓形紙板,根據(jù)要求,需通過多次剪裁,把它剪成若干個扇形面.操作過程如下:第1次剪裁,將圓形紙板等分為4個扇形;第2次剪裁,將上次得到的扇形面中的一個再等分成4個扇形;以后按第2次剪裁的作法進行下去.
(1)請你在⊙O中,用尺規(guī)作出第2次剪裁后得到的7個扇形(保留痕跡,不寫作法)
(2)請你通過操作和猜想,將第3、第4和第n次裁剪后所得扇形的總個數(shù)(s)填入下表.
等分圓及扇形面的次數(shù)(n)1234n
所得扇形的總個數(shù)(S)47
(3)請你推斷,能不能按上述操作過程,將原來的圓形紙板剪成33個扇形?為什么?

查看答案和解析>>

同步練習(xí)冊答案