(2008•青島)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<2),解答下列問題:
(1)當t為何值時,PQ∥BC;
(2)設△AQP的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

【答案】分析:(1)當PQ∥BC時,我們可得出三角形APQ和三角形ABC相似,那么可得出關于AP,AB,AQ,AC的比例關系,我們觀察這四條線段,已知的有AC,根據(jù)P,Q的速度,可以用時間t表示出AQ,BP的長,而AB可以用勾股定理求出,這樣也就可以表示出AP,那么將這些數(shù)值代入比例關系式中,即可得出t的值.
(2)求三角形APQ的面積就要先確定底邊和高的值,底邊AQ可以根據(jù)Q的速度和時間t表示出來.關鍵是高,可以用AP和∠A的正弦值來求.AP的長可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ邊上的高后,就可以得出y與t的函數(shù)關系式.
(3)如果將三角形ABC的周長和面積平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的長,那么可以求出此時t的值,我們可將t的值代入(2)的面積與t的關系式中,求出此時面積是多少,然后看看面積是否是三角形ABC面積的一半,從而判斷出是否存在這一時刻.
(4)我們可通過構建相似三角形來求解.過點P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是個矩形,解題思路:通過三角形BPN和三角形ABC相似,得出關于BP,PN,AB,AC的比例關系,即可用t表示出PN的長,也就表示出了MC的長,要想使四邊形PQP'C是菱形,PQ=PC,根據(jù)等腰三角形三線合一的特點,QM=MC,這樣有用t表示出的AQ,QM,MC三條線段和AC的長,就可以根據(jù)AC=AQ+QM+MC來求出t的值.求出了t就可以得出QM,CM和PM的長,也就能求出菱形的邊長了.
解答:解:(1)在Rt△ABC中,AB=
由題意知:AP=5-t,AQ=2t,若PQ∥BC,則△APQ∽△ABC,
=,∴=,
∴t=.所以當t=時,PQ∥BC.

(2)過點P作PH⊥AC于H.
∵△APH∽△ABC,
=
=,
∴PH=3-t,
∴y=×AQ×PH=×2t×(3-t)=-t2+3t.

(3)若PQ把△ABC周長平分,則AP+AQ=BP+BC+CQ.
∴(5-t)+2t=t+3+(4-2t),解得t=1.
若PQ把△ABC面積平分,則S△APQ=S△ABC,即-+3t=3.
∵t=1代入上面方程不成立,
∴不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.

(4)過點P作PM⊥AC于M,PN⊥BC于N,
若四邊形PQP'C是菱形,那么PQ=PC.
∵PM⊥AC于M,
∴QM=CM.
∵PN⊥BC于N,易知△PBN∽△ABC.
=,∴=,
∴PN=,
∴QM=CM=
t+t+2t=4,解得:t=
∴當t=s時,四邊形PQP'C是菱形.
此時PM=3-t=cm,CM=t=cm,
在Rt△PMC中,PC===cm,
∴菱形PQP′C邊長為cm.
點評:本題圖形結合的動態(tài)題,是近幾年考試熱點,同時考查三角形相似知識,是一道很好的綜合題.本題亮點是巧妙結合圖形綜合考查不同知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年《海峽教育報》初中數(shù)學綜合練習(二)(解析版) 題型:解答題

(2008•青島)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<2),解答下列問題:
(1)當t為何值時,PQ∥BC;
(2)設△AQP的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省都江堰市中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•青島)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<2),解答下列問題:
(1)當t為何值時,PQ∥BC;
(2)設△AQP的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年河北省廊坊市安次區(qū)九年級網(wǎng)絡試卷設計大賽數(shù)學試卷(3)(解析版) 題型:解答題

(2008•青島)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<2),解答下列問題:
(1)當t為何值時,PQ∥BC;
(2)設△AQP的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省廣州市海珠區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•青島)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<2),解答下列問題:
(1)當t為何值時,PQ∥BC;
(2)設△AQP的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案