精英家教網 > 初中數學 > 題目詳情
拋物線y=-x2向上平移2個單位后所得的拋物線表達式是               
y=-x2+2.

試題分析:求出平移后的拋物線的頂點坐標,然后利用頂點式形式寫出即可.
試題解析:∵拋物線y=-x2向上平移2個單位后的頂點坐標為(0,2),
∴所得拋物線的解析式為y=-x2+2.
考點: 二次函數圖象與幾何變換.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).

(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標.
(3)在拋物線上是否存在點P,使SPBD=6?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數的圖象如圖所示,則下列關系式錯誤的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,直角坐標系中Rt△ABO,其頂點為A(0, 1)、B(2, 0)、O(0, 0),將此三角板繞原點O逆時針旋轉90°,得到Rt△A′B′O.

(1)一拋物線經過點A′、B′、B,求該拋物線的解析式;
(2)設點P是在第一象限內拋物線上的一動點,是否存在點P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請求出P的坐標;若不存在,請說明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.

(1)求A、B、C三點的坐標.
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積.
(3)在軸上方的拋物線上是否存在一點M,過M作MG軸于點G,使以A、M、G三點為頂點的三角形與PCA相似.若存在,請求出M點的坐標;否則,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

將二次函數的圖像向下平移1個單位后,它的頂點恰好落在軸上,則   

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點D.

(1)求證:∠CAD =∠CAB;
(2)已知拋物線過A、B、C三點,AB=10,tan∠CAD=
① 求拋物線的解析式;
② 判斷拋物線的頂點E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點P,使四邊形PBCA是直角梯形.若存在,直接寫出點P的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖是二次函數y=ax2+bx+c圖像的一部分,其對稱軸是直線x=-1,且過點(-3,0),下列說法:①abc>0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是拋物在線兩點,則y1>y2,其中正確的是(  )
A.②B.②③C.②④D.①②

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

拋物線y=x+4x+5是由拋物線y=x+1經過某種平移得到,則這個平移可以表述為(      )
A.向上平移2個單位B.向左平移2個單位
C.向下平移4個單位D.向右平移2個單位

查看答案和解析>>

同步練習冊答案