精英家教網 > 初中數學 > 題目詳情
已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,在下列五個結論中:
①2a-b<0;②abc<0;③a+b+c<0;④a-b+c>0;⑤4a+2b+c>0,
錯誤的個數有( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,利用圖象將x=1,-1,2代入函數解析式判斷y的值,進而對所得結論進行判斷.
解答:解:①∵由函數圖象開口向下可知,a<0,由函數的對稱軸x=->-1,故<1,∵a<0,∴b>2a,所以2a-b<0,①正確; 
②∵a<0,對稱軸在y軸左側,a,b同號,圖象與y軸交于負半軸,則c<0,故abc<0;②正確;
③當x=1時,y=a+b+c<0,③正確;
④當x=-1時,y=a-b+c<0,④錯誤;
⑤當x=2時,y=4a+2b+c<0,⑤錯誤;
故錯誤的有2個.
故選:B.
點評:此題主要考查了圖象與二次函數系數之間的關系,將x=1,-1,2代入函數解析式判斷y的值是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

21、已知二次函數y=a(x+1)2+c的圖象如圖所示,則函數y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標;(2)求出二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數學試卷(解析版) 題型:選擇題

已知二次函數y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

已知二次函數y=ax+bx+c(a≠0,a,b,c為常數),對稱軸為直線x=1,它的部分自變量與函數值y的對應值如下表,寫出方程ax2+bx+c=0的一個正數解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關于直線x=1對稱

(B)函數y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案