【題目】如圖,直線y=kx+b與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,OB=4,sin∠CBO=.
(1)求直線AB的解析式;
(2)直線AB與反比例函數(shù)y=相交于C、D兩點(diǎn)(C點(diǎn)在第一象限),求S△DOC的面積.
【答案】(1)直線AB的解析式為y=x﹣4;(2)S△DOC的面積:16.
【解析】
(1)由sin∠CBO=得出∠CBO=45°,即可得出△AOB是等腰直角三角形,從而求得A、B的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得直線AB的解析式;
(2)解析式聯(lián)立求得交點(diǎn)C、D的坐標(biāo),然后根據(jù)S△DOC=S△BOC+S△BOD即可求得.
解:(1)∵OB=4,sin∠CBO=.
∴∠CBO=45°,
∴△AOB是等腰直角三角形,
∴OA=OB=4,
∴A(4,0),B(0,﹣4),
代入y=kx+b得,
解得k=1,b=﹣4,
∴直線AB的解析式為y=x﹣4;
(2)解
得或,
∴C(6,2),D(﹣2,﹣6),
∴S△DOC=S△BOC+S△BOD==16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn),連接BD,CD,拋物線的對(duì)稱軸與x軸交與點(diǎn)E.
(1)求拋物線解析式及點(diǎn)D的坐標(biāo);
(2)G是拋物線上B,D之間的一點(diǎn),且S四邊形CDGB=4S△DGB,求出G點(diǎn)坐標(biāo);
(3)在拋物線上B,D之間是否存在一點(diǎn)M,過點(diǎn)M作MN⊥CD,交直線CD于點(diǎn)N,使以C,M,N為頂點(diǎn)的三角形與△BDE相似?若存在,求出滿足條件的點(diǎn)M的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn),與軸交于點(diǎn).
求這條拋物線的解析式;
如圖1,點(diǎn)P是第三象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)四邊形的面積最大時(shí),求點(diǎn)的坐標(biāo);
如圖2,線段的垂直平分線交軸于點(diǎn),垂足為為拋物線的頂點(diǎn),在直線上是否存在一點(diǎn),使的周長最?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場今年“十一”期間舉行購物摸獎(jiǎng)活動(dòng),摸獎(jiǎng)箱里有四個(gè)標(biāo)號(hào)分別為1,2,3,4的質(zhì)地,大小都相同的小球,任意摸出一個(gè)小球,記下小球標(biāo)號(hào)后,放回箱里并搖勻,再摸出一個(gè)小球,再記下小球標(biāo)號(hào).商場規(guī)定:兩次摸出的小球之和為“8”或“6”時(shí)才算中獎(jiǎng).請結(jié)合“樹形圖法”或“列表法”,求出顧客小彥參加此次摸獎(jiǎng)活動(dòng)時(shí)中獎(jiǎng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某一時(shí)刻,小寧站在斜坡AC上的A處,小李在大樓FD的樓頂F處,此時(shí)小寧望小李的仰角為18.43°.5秒后,小寧沿斜坡AC前進(jìn)到達(dá)C處,小李從大樓F處下樓到大樓E處,此時(shí)小李望小寧的俯角為22.6°;然后小李繼續(xù)下樓,小寧沿CD前往樓底D處,已知小寧的速度為5.2米/秒,大樓FD的高度為30米,斜坡AC的坡度為1:2.4,小李、小寧都保持勻速前進(jìn),若斜坡、大樓在同一平面內(nèi),小李、小寧的身高忽略不計(jì),則當(dāng)小李達(dá)到樓底D處時(shí),小寧距離D處的距離為( 。┟祝
(已知:tan18.43°≈,sin18.43°≈,cos22.6°≈,tan22.6≈)
A.10B.15.6C.20.4D.26
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD中,N是邊BC上一點(diǎn),延長DN、AB交于點(diǎn)Q,過A作AM⊥DN于點(diǎn)M,連接AN,則AD⊥AN.
(1)如圖①,若tan∠ADM=,MN=3,求BC的長;
(2)如圖②,過點(diǎn)B作BH∥DQ交AN于點(diǎn)H,若AM=CN,求證:DM=BH+NH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市某中學(xué)為了豐富校園文化生活.校學(xué)生會(huì)決定舉辦演講、歌唱、繪畫、舞蹈四項(xiàng)比賽,要求每位學(xué)生都參加.且只能參加一項(xiàng)比賽.圍繞“你參賽的項(xiàng)目是什么?(只寫一項(xiàng))”的問題,校學(xué)生會(huì)在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查。將調(diào)查問卷適當(dāng)整理后繪制成如圖所示的不完整的條形統(tǒng)計(jì)圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為1:3.請你根據(jù)以上信息回答下列問題:
(1)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(3)如果全校有680名學(xué)生,請你估計(jì)這680名學(xué)生中參加演講比賽的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)孟老師數(shù)學(xué)小組經(jīng)過市場調(diào)査,得到某種運(yùn)動(dòng)服的月銷量y(件)是售價(jià)x(元/件)的一次函數(shù),其售價(jià)、月銷售量、月銷售利潤w(元)的三組對(duì)應(yīng)值如表:
售價(jià)x(元/件) | 130 | 150 | 180 |
月銷售量y(件) | 210 | 150 | 60 |
月銷售利潤w(元) | 10500 | 10500 | 6000 |
注:月銷售利潤=月銷售量×(售價(jià)﹣進(jìn)價(jià))
(1)求y關(guān)于x的函數(shù)解析式(不要求寫出自變量的取值范圍);
(2)運(yùn)動(dòng)服的進(jìn)價(jià)是 元/件;
(3)當(dāng)售價(jià)是多少時(shí),月銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為引導(dǎo)學(xué)生廣泛閱讀文學(xué)名著,某校在七年級(jí)、八年級(jí)開展了讀書知識(shí)競賽,該校七、八年級(jí)各有學(xué)生人,各隨機(jī)抽取名學(xué)生進(jìn)行了抽樣調(diào)查,獲得了他們知識(shí)競賽成績(分),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.
七年級(jí):
八年級(jí):
成績?nèi)藬?shù) | |||||
七年級(jí) | |||||
八年級(jí) |
平均數(shù)、中位數(shù)、眾數(shù)如表所示:
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
七年級(jí) | |||
八年級(jí) |
根據(jù)以上信息,回答下列問題:
, ,_
該校對(duì)讀書知識(shí)競賽成績不少于分的學(xué)生授予“閱讀小能手”稱號(hào),請你估計(jì)該校七、八年級(jí)所有學(xué)生中獲得“閱讀小能手”稱號(hào)的大約有 人;
結(jié)合以數(shù)據(jù),你認(rèn)為哪個(gè)年級(jí)讀書知識(shí)競賽的總體成績較好,說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com