作業(yè)寶如圖,在四邊形ABCD中,對角線AC、BD相交于點O,且AC=BD,E、F分別是AB、CD的中點,EF分別交BD、AC于點G、H,若∠OBC=55°,∠OCB=45°,則∠OGH=________°.

50
分析:取BC中點M,連接ME、FM,根據(jù)三角形中位線定理可得EM=AC,MF=DB,EM∥AC,MF∥BD,然后再證明EM=MF,進而得到∠OHG=∠OGH,然后再結合三角形內角和定理可得答案.
解答:解:取BC中點M,連接ME、FM,
∵E、F分別是AB、CD的中點,
∴EM=AC,MF=DB,EM∥AC,MF∥BD,
∵AC=BD,
∴EM=MF,
∴∠MEF=∠MFE,
∵EM∥AC,MF∥BD,
∴∠OHG=∠MEF,∠OGH=∠MFE,
∴∠OHG=∠OGH,
∵∠OBC=55°,∠OCB=45°,
∴∠BOC=180°-55°-45°=80°,
∴∠HOG=80°,
∴∠OGH=(180°-80°)÷2=50°,
故答案為:50.
點評:此題主要考查了三角形中位線的性質,以及三角形內角和定理,關鍵是掌握三角形的中位線平行于第三邊,并且等于第三邊的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結AD、AE、CD,則下列結論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案