如圖,∠AOB是直角,∠BOC=50°,OD平分∠AOC,若∠DOE=45°,那么OE平分∠BOC嗎?請說明理由.
OE平分∠BOC,理由是:
∵∠AOB是直角,∠BOC=50°,
∴∠AOC=∠AOB+∠BOC=140°,
∵OD平分∠AOC,
∴∠DOC=
1
2
∠AOC=70°,
∵∠DOE=45°,
∴∠EOC=70°-45°=25°,
∵∠BOC=50°,
∴∠BOE=50°-25°=25°=∠EOC,
∴OE平分∠BOC.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

船向北偏東50°方向航行到某地后,依原航線返回,船返回時方向應該是( 。
A.南偏西40°B.北偏西50°C.北偏西40°D.南偏西50°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知OE垂直于直線AB,垂足為點O,射線OD在北偏東35°的方向,反向延長射線OD于點C.
(1)∠DOE=______;
(2)求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,O是直線AB上一點,OD平分∠BOC,∠COE=90°.
(1)若∠AOC=40°,求∠DOE的度數(shù);
(2)若∠AOC=α,則∠DOE=______(用含α代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將兩塊直角三角板的直角頂點重合,如圖所示,若∠AOD=128°,則∠BOC=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)先化簡,再求值:已知a=-1,b=2,求2a2-[8ab+
1
2
(ab-4a2)]-
1
2
ab的值.
(2)如圖∠COD=116°,∠BOD=90°,OA平分∠BOC,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知∠AOC=60°,∠AOB:∠AOC=2:3,則∠BOC的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將一副三角板的直角頂點重合放置于A處(兩塊三角板可以在同一平面內(nèi)自由轉動),下列結論一定成立的是( 。
A.∠BAE>∠DACB.∠BAE-∠DAC=45°
C.∠BAE+∠DAC=180°D.∠BAD≠∠EAC

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

甲從A出發(fā)向北偏東45度走到點B,乙從點A出發(fā)向北偏西30度走到點C,則∠BAC=______.

查看答案和解析>>

同步練習冊答案