已知:在直角坐標(biāo)系中,A、B兩點(diǎn)是拋物線y=x2-(m-3)x-m與x軸的交點(diǎn)(A在B的右側(cè)),x1、x2分別是A、B兩點(diǎn)的橫坐標(biāo),且|x1-x2|=3.
(1)當(dāng)m>0時(shí),求拋物線的解析式.
(2)如果(1)中所求的拋物線與y軸交于點(diǎn)C,問y軸上是否存在點(diǎn)D(不含與C重合的點(diǎn)),使得以D、O、A為頂點(diǎn)的三角形與△AOC相似?若存在,請(qǐng)求出D點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)一次函數(shù)y=kx+b的圖象經(jīng)過拋物線的頂點(diǎn),且當(dāng)k>0時(shí),圖象與兩坐標(biāo)軸所圍成的面積是數(shù)學(xué)公式,求一次函數(shù)的解析式.

解:(1)x2-(m-3)x-m=0,
x1+x2=m-3,x1•x2=-m,
∵|x1-x2|=3,
∴(x1+x22-4x1•x2=9,
∴(m-3)2+4m=9,
∵m>0,
∴m=2,
∴y=x2+x-2=0.
答:當(dāng)m>0時(shí),拋物線的解析式是y=x2+x-2.

(2)x2+x-2=0,
x1=-2,x2=1,
∴A(1,0),
即OA=1,
把x=0代入得:y=-2,
∴OC=2,
∵以D、O、A為頂點(diǎn)的三角形與△AOC相似,
∠AOC=∠AOD,
==,
代入求出OD=OC=2,或OD=,
∴D的坐標(biāo)是(0,2)或(0,).
答:存在點(diǎn)D(不含與C重合的點(diǎn)),使得以D、O、A為頂點(diǎn)的三角形與△AOC相似,D點(diǎn)的坐標(biāo)是(0,2)或(0,).

(3)當(dāng)x=0時(shí),y=b,
當(dāng)y=0時(shí),x=-,
∴|b•(-)|=,①
y=x2+x-2=-,
∴頂點(diǎn)坐標(biāo)是(-,-),
代入y=kx+b得:-=-k+b ②,
由①②組成方程組,解方程組得:,
∴y=7.9x+3.7,y=2.7x+1.1.
答:一次函數(shù)的解析式是y=7.9x+3.7或y=2.7x+1.1.
分析:(1)根據(jù)根與系數(shù)的關(guān)系得到(x1+x22-4x1•x2=9,x1+x2=m-3,x1•x2=-m,代入求出即可;
(2)求出A、C的坐標(biāo),求出OA、OC,根據(jù)相似三角形的性質(zhì)得出==,代入求出即可;
(3)求出直線與X、Y軸的交點(diǎn)坐標(biāo),根據(jù)三角形的面積公式得到|b•(-)|=,求出頂點(diǎn)坐標(biāo)代入解析式得到方程,兩方程組成方程組,求出方程組的解即可.
點(diǎn)評(píng):本題主要考查對(duì)相似三角形的性質(zhì)和判定,解二元一次方程組,用待定系數(shù)法求一次函數(shù)的解析式,二次函數(shù)的最值,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根與系數(shù)的關(guān)系等知識(shí)點(diǎn)的理解和掌握,綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在直角坐標(biāo)系中,A、B兩點(diǎn)是拋物線y=x2-(m-3)x-m與x軸的交點(diǎn)(A在B的右側(cè)),x1、x2分別是A、B兩點(diǎn)的橫坐標(biāo),且|x1-x2|=3.
(1)當(dāng)m>0時(shí),求拋物線的解析式.
(2)如果(1)中所求的拋物線與y軸交于點(diǎn)C,問y軸上是否存在點(diǎn)D(不含與C重合的點(diǎn)),使得以D、O、A為頂點(diǎn)的三角形與△AOC相似?若存在,請(qǐng)求出D點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)一次函數(shù)y=kx+b的圖象經(jīng)過拋物線的頂點(diǎn),且當(dāng)k>0時(shí),圖象與兩坐標(biāo)軸所圍成的面積是
15
,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:在直角坐標(biāo)系中.點(diǎn)E從O點(diǎn)出發(fā),以1個(gè)單位/秒的速度沿x軸正方向運(yùn)動(dòng),點(diǎn)F從O點(diǎn)出發(fā),以2個(gè)單位/秒的速度沿y軸正方向運(yùn)動(dòng).B(4,2),以BE為直徑作⊙O1
精英家教網(wǎng)
(1)若點(diǎn)E、F同時(shí)出發(fā),設(shè)線段EF與線段OB交于點(diǎn)G,試判斷點(diǎn)G與⊙O1的位置關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件下,連接FB,幾秒時(shí)FB與⊙O1相切?
(3)若點(diǎn)E提前2秒出發(fā),點(diǎn)F再出發(fā).當(dāng)點(diǎn)F出發(fā)后,點(diǎn)E在A點(diǎn)的左側(cè)時(shí),設(shè)BA⊥x軸于點(diǎn)A,連接AF交⊙O1于點(diǎn)P,試問AP•AF的值是否會(huì)發(fā)生變化?若不變,請(qǐng)說明理由并求其值;若變化,請(qǐng)求其值的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在直角坐標(biāo)系中,直線y=2x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)畫出這個(gè)函數(shù)的圖象,并直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)C是第二象限內(nèi)的點(diǎn),且到x軸的距離為1,到y(tǒng)軸的距離為
12
,請(qǐng)判斷點(diǎn)C是否在這條直線上?(寫出判斷過程)
(3)在第(2)題中,作CD⊥x軸于D,那么在x軸上是否存在一點(diǎn)P,使△CDP≌△AOB?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△PQR在直角坐標(biāo)系中的位置如圖所示:
(1)求出△PQR的面積;
(2)畫出△P′Q′R′,使△P′Q′R′與△PQR關(guān)于y軸對(duì)稱,寫出點(diǎn)P′、Q′、R′的坐標(biāo);
(3)連接PP′,QQ′,判斷四邊形QQ′P′P的形狀,求出四邊形QQ′P′P的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2006•青島)已知△ABC在直角坐標(biāo)系中的位置如圖所示,如果△A′B′C′與△ABC關(guān)于y軸對(duì)稱,那么點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案