【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(6,5),點(diǎn)E在邊AB上,且AE=2,已知點(diǎn)P為y軸上一動點(diǎn),連接EP,過點(diǎn)O作直線EP的垂線段OH,垂足為點(diǎn)H,在點(diǎn)P從點(diǎn)C運(yùn)動到原點(diǎn)O的過程中,點(diǎn)H的運(yùn)動路徑長為__________.
【答案】
【解析】
H經(jīng)過的路徑是以OE為直徑的弧,連接OE,首先求得△OPE的面積,然后利用三角形面積公式求得OH的長,然后在直角△OEH中,利用三角函數(shù)求得∠OEH的度數(shù),然后利用弧長公式即可求解.
∵矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(6,5),
∴OC=AB=5,BC=AB=6,
連接OE.
當(dāng)點(diǎn)P與點(diǎn)C重合時,S△OPE= ,
在直角△OEA中,AE=2,OA=6
∴OE=,
PE=,
∵S△OPE=PEOH,即,
∴OH=,
∴在直角△OEH中,sin∠OEH=,
∴∠OEH=45°,
∴點(diǎn)H的運(yùn)動路徑為以OE為直徑,從點(diǎn)H到點(diǎn)O的四分之一的圓弧,
故點(diǎn)H的運(yùn)動路徑長是:.
故答案是:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.
(1)△ABC的面積等于 ;
(2)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2-4ax+b交x軸正半軸于A、B兩點(diǎn),交y軸正半軸于C,且OB=OC=3.
(1) 求拋物線的解析式;
(2) 如圖1,D為拋物線的頂點(diǎn),P為對稱軸左側(cè)拋物線上一點(diǎn),連接OP交直線BC于G,連GD.是否存在點(diǎn)P,使?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3) 如圖2,將拋物線向上平移m個單位,交BC于點(diǎn)M、N.若∠MON=45°,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,、分別為、的中點(diǎn),連接、,和交于點(diǎn).
(1)如圖1,求證:;
(2)如圖2,作關(guān)于對稱的圖形,連接,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于正方形面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店經(jīng)銷某種型號的汽車.已知該型號汽車的進(jìn)價為15萬元/輛,經(jīng)銷一段時間后發(fā)現(xiàn):當(dāng)該型號汽車售價定為25萬元/輛時,平均每周售出8輛;售價每降低0.5萬元,平均每周多售出1輛.
(1)當(dāng)售價為22萬元/輛時,求平均每周的銷售利潤.
(2)若該店計劃平均每周的銷售利潤是90萬元,為了盡快減少庫存,求每輛汽車的售價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AEF中,∠EAF=45°,AG⊥EF于點(diǎn)G,現(xiàn)將△AEG沿AE折疊得到△AEB,將△AFG沿AF折疊得到△AFD,延長BE和DF相交于點(diǎn)C.
(1)試判斷四邊形ABCD的形狀,并給出證明;
(2)連接BD分別交AE、AF于點(diǎn)M、N,將△ABM繞點(diǎn)A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH,試判斷線段MN、ND、DH之間的數(shù)量關(guān)系,并說明理由.
(3)若EG=2,GF=3,BM=2,求AG、MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,點(diǎn)B的坐標(biāo)為,頂點(diǎn)C的坐標(biāo)為.
求二次函數(shù)的解析式和直線BD的解析式;
點(diǎn)P是直線BD上的一個動點(diǎn),過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)M,當(dāng)點(diǎn)P在第一象限時,求線段PM長度的最大值;
在拋物線上是否存在異于B、D的點(diǎn)Q,使中BD邊上的高為?若存在求出點(diǎn)Q的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC、BD交于O點(diǎn),DE∥AC,CE∥BD.
(1)求證:四邊形OCED為矩形;
(2)在BC上截取CF=CO,連接OF,若AC=16,BD=12,求四邊形OFCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是銳角的外接圓,是的切線,切點(diǎn)為,,連結(jié)交于,的平分線交于,連結(jié).下列結(jié)論:①平分;②連接,點(diǎn)為的外心;③;④若點(diǎn),分別是和上的動點(diǎn),則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com