(2009•江西)如圖1,在等腰梯形ABCD中,AD∥BC,E是AB的中點(diǎn),過(guò)點(diǎn)E作EF∥BC交CD于點(diǎn)F.AB=4,BC=6,∠B=60度.
(1)求點(diǎn)E到BC的距離;
(2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)P作PM⊥EF交BC于點(diǎn)M,過(guò)M作MN∥AB交折線ADC于點(diǎn)N,連接PN,設(shè)EP=x.
①當(dāng)點(diǎn)N在線段AD上時(shí)(如圖2),△PMN的形狀是否發(fā)生改變?若不變,求出△PMN的周長(zhǎng);若改變,請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)N在線段DC上時(shí)(如圖3),是否存在點(diǎn)P,使△PMN為等腰三角形?若存在,請(qǐng)求出所有滿足要求的x的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)可通過(guò)構(gòu)建直角三角形然后運(yùn)用勾股定理求解.
(2)①△PMN的形狀不會(huì)變化,可通過(guò)做EG⊥BC于G,不難得出PM=EG,這樣就能在三角形BEG中求出EG的值,也就求出了PM的值,如果做PH⊥MN于H,PH是三角形PMH和PHN的公共邊,在直角三角形PHM中,有PM的值,∠PMN的度數(shù)也不難求出,那么就能求出MH和PH的值,也就求出HN和PN的值了,有了PN,PM,MN的值,就能求出三角形MPN的周長(zhǎng)了.
②本題分兩種情況進(jìn)行討論:
1、N在CD的DF段時(shí),PM=PN.這種情況同①的計(jì)算方法.
2、N在CD的CF段時(shí),又分兩種情況進(jìn)行討論
MP=MN時(shí),MC=MN=MP,這樣有了MC的值,x也就能求出來(lái)了
NP=NM時(shí),我們不難得出∠PMN=120°,又因?yàn)椤螹NC=60°因此∠PNM+∠MNC=180度.這樣點(diǎn)P與F就重合了,△PMC即這是個(gè)直角三角形,然后根據(jù)三角函數(shù)求出MC的值,然后就能求出x了.
綜合上面的分析把△PMC是等腰三角形的情況找出來(lái)就行了.
解答:解:(1)如圖1,過(guò)點(diǎn)E作EG⊥BC于點(diǎn)G.
∵E為AB的中點(diǎn),
∴BE=AB=2
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=BE=1,EG=
即點(diǎn)E到BC的距離為

(2)①當(dāng)點(diǎn)N在線段AD上運(yùn)動(dòng)時(shí),△PMN的形狀不發(fā)生改變.
∵PM⊥EF,EG⊥EF,
∴PM∥EG,又EF∥BC,
∴四邊形EPMG為矩形,
∴EP=GM,PM=EG=
同理MN=AB=4.
如圖2,過(guò)點(diǎn)P作PH⊥MN于H,
∵M(jìn)N∥AB,
∴∠NMC=∠B=60°,又∠PMC=90°,
∴∠PMH=∠PMC-∠NMC=30°.
∴PH=PM=
∴MH=PM•cos30°=
則NH=MN-MH=4-
在Rt△PNH中,PN=
∴△PMN的周長(zhǎng)=PM+PN+MN=

②當(dāng)點(diǎn)N在線段DC上運(yùn)動(dòng)時(shí),△PMN的形狀發(fā)生改變,但△MNC恒為等邊三角形.
當(dāng)PM=PN時(shí),如圖3,作PR⊥MN于R,則MR=NR.
類似①,PM=,∠PMR=30°,
MR=PMcos30°=×=
∴MN=2MR=3.
∵△MNC是等邊三角形,
∴MC=MN=3.
此時(shí),x=EP=GM=BC-BG-MC=6-1-3=2.
當(dāng)MP=MN時(shí),
∵EG=,
∴MP=MN=,
∵∠B=∠C=60°,
∴△MNC是等邊三角形,
∴MC=MN=MP=(如圖4),
此時(shí),x=EP=GM=6-1-,
當(dāng)NP=NM時(shí),如圖5,∠NPM=∠PMN=30度.
則∠PNM=120°,又∠MNC=60°,
∴∠PNM+∠MNC=180度.
因此點(diǎn)P與F重合,△PMC為直角三角形.
∴MC=PM•tan30°=1.
此時(shí),x=EP=GM=6-1-1=4.
綜上所述,當(dāng)x=2或4或(5-)時(shí),△PMN為等腰三角形.
點(diǎn)評(píng):本題綜合考查了等腰梯形,等腰直角三角形的性質(zhì),中位線定理,勾股定理等知識(shí)點(diǎn)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省荊州市江陵縣三湖中學(xué)九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫(xiě)出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年河南省油田教育中心第一次數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫(xiě)出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年安徽省巢湖市初中畢業(yè)班第二次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫(xiě)出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫(xiě)出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫(xiě)出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案