)直線y=﹣x﹣1與反比例函數(shù)(x<0)的圖象交于點(diǎn)A,與x軸相交于點(diǎn)B,過(guò)點(diǎn)B作x軸垂線交雙曲線于點(diǎn)C,若AB=AC,則k的值為( 。

A.﹣2B.﹣4C.﹣6D.﹣8

B

解析試題分析:過(guò)A作AD⊥BC于D,先求出直線=﹣x﹣1與x軸交點(diǎn)B的坐標(biāo)(﹣2,0),則得到C點(diǎn)的橫坐標(biāo)為﹣2,由于C點(diǎn)在反比例函數(shù)y=的圖象上,可表示出C點(diǎn)坐標(biāo)為(﹣2,﹣),利用等腰三角形的性質(zhì),由AC=AB,AD⊥BC,得到DC=DB,于是D點(diǎn)坐標(biāo)為(﹣2,﹣),則可得到A點(diǎn)的縱坐標(biāo)為﹣,利用點(diǎn)A在函數(shù)y=的圖象上,可表示出點(diǎn)A的坐標(biāo)為(﹣4,﹣),然后把A(﹣4,﹣)代入y=﹣x﹣1得到關(guān)于k的方程,解方程即可求出k的值.
解:過(guò)A作AD⊥BC于D,如圖,

對(duì)于y=﹣x﹣1,令y=0,則﹣x﹣1=0,解得x=﹣2,
∴B點(diǎn)坐標(biāo)為(﹣2,0),
∵CB⊥x軸,
∴C點(diǎn)的橫坐標(biāo)為﹣2,
對(duì)于y=,令x=﹣2,則y=﹣
∴C點(diǎn)坐標(biāo)為(﹣2,﹣),
∵AC=AB,AD⊥BC,
∴DC=DB,
∴D點(diǎn)坐標(biāo)為(﹣2,﹣),
∴A點(diǎn)的縱坐標(biāo)為﹣,
而點(diǎn)A在函數(shù)y=的圖象上,
把y=﹣代入y=得x=﹣4,
∴點(diǎn)A的坐標(biāo)為(﹣4,﹣),
把A(﹣4,﹣)代入y=﹣x﹣1得﹣=﹣×(﹣4)﹣1,
∴k=﹣4.
故選B.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.
點(diǎn)評(píng):本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題:反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo)滿足兩個(gè)函數(shù)的解析式.也考查了與x軸垂直的直線上所有點(diǎn)的橫坐標(biāo)相同以及等腰三角形的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線y=-2x+2分別與x軸、y軸交于A、B兩點(diǎn),以線段AB為直角邊在第一象限精英家教網(wǎng)內(nèi)作Rt△ABC,∠BAC=90°.
(1)求點(diǎn)A、B坐標(biāo);
(2)若AC=
12
AB,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(0,10),點(diǎn)P、Q同時(shí)從O點(diǎn)出發(fā),在線段OB上做往返運(yùn)動(dòng),點(diǎn)P往返一次需10s,點(diǎn)Q往返一次需6s.設(shè)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為x(s),動(dòng)點(diǎn)離開(kāi)原點(diǎn)的距離是y.
(1)當(dāng)0≤x≤10時(shí),畫(huà)出點(diǎn)P,點(diǎn)Q的運(yùn)動(dòng)圖象,并回答:
①點(diǎn)P從O點(diǎn)出發(fā),1個(gè)往返之間與點(diǎn)Q相遇幾次?(不包括O點(diǎn))
②點(diǎn)P從O點(diǎn)出發(fā),幾秒后與點(diǎn)Q第一次相遇?
(2)如圖②,在平面直角坐標(biāo)系中,?OCDE的頂點(diǎn)C(6,0),D、E、B在同一直線上.分別過(guò)點(diǎn)P、Q作PM、QN垂直于y軸,P、Q為垂足.設(shè)運(yùn)動(dòng)過(guò)程中兩條直線PM,QN與?OCDE圍成圖形(陰影部分)的面積是S,試求當(dāng)x(0≤x≤5)為多少秒時(shí),S有最大值,最大值是多少?
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=x+m與反比例函數(shù)y=
k
x
相交于點(diǎn)A(6,2),與x軸交于B點(diǎn),點(diǎn)C在直線AB上且
AB
BC
=
2
3
精英家教網(wǎng)過(guò)B、C分別作y軸的平行線交雙曲線y=
k
x
于D、E兩點(diǎn).
(1)求m、k的值;    
(2)求點(diǎn)D、E坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄂州)直線y=-
1
2
x-1與反比例函數(shù)y=
k
x
(x<0)的圖象交于點(diǎn)A,與x軸相交于點(diǎn)B,過(guò)點(diǎn)B作x軸垂線交雙曲線于點(diǎn)C,若AB=AC,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海)如圖,在平面直角坐標(biāo)系中,直線y=
1
2
x+
3
2
與直線y=x交于點(diǎn)A,點(diǎn)B在直線y=
1
2
x+
3
2
上,∠BOA=90°.拋物線y=ax2+bx+c過(guò)點(diǎn)A,O,B,頂點(diǎn)為點(diǎn)E.
(1)求點(diǎn)A,B的坐標(biāo);
(2)求拋物線的函數(shù)表達(dá)式及頂點(diǎn)E的坐標(biāo);
(3)設(shè)直線y=x與拋物線的對(duì)稱軸交于點(diǎn)C,直線BC交拋物線于點(diǎn)D,過(guò)點(diǎn)E作FE∥x軸,交直線AB于點(diǎn)F,連接OD,CF,CF交x軸于點(diǎn)M.試判斷OD與CF是否平行,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案