如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點(diǎn)D是斜邊AB的中點(diǎn),則tan∠ODA=   
【答案】分析:如圖,因?yàn)椤螩=90°,易得AB=10;又因?yàn)椤袿為△ABC的內(nèi)切圓,易得四邊形OFCG是正方形,設(shè)半徑為x,列方程即可求得;進(jìn)一步設(shè)AE=y,根據(jù)三角形內(nèi)切圓的性質(zhì),即可求得y的值,則易得tan∠ODA.
解答:解:連接OE,OF,OG;
∵∠C=90°,AC=6,BC=8,
∴AB=10,
∵⊙O為△ABC的內(nèi)切圓,
∴OG⊥BC,OF⊥AC,OE⊥AB,AF=AE,CF=CG,
∴∠OGC=∠OFC=∠OED=90°;
∵∠C=90°,
∴四邊形OFCG是矩形,
∵OG=OF,
∴四邊形OFCG是正方形;
設(shè)OF=x,則CF=CG=OF=x,AF=AE=6-x,BE=BG=8-x,
∴6-x+8-x=10,
∴OF=2,
∴AE=4;
∵點(diǎn)D是斜邊AB的中點(diǎn),
∴AD=AB=5,
∴DE=AD-AE=1,
∴tan∠ODA==2.
點(diǎn)評(píng):此題考查了三角形內(nèi)切圓的性質(zhì).注意切線長(zhǎng)定理.還要注意直角三角形的內(nèi)切圓中,如果連接過(guò)切點(diǎn)的半徑,可以得到一個(gè)正方形,借助于方程即可求得半徑的長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案