【題目】已知拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)C的坐標(biāo)是(0,﹣3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求直線BC的函數(shù)表達(dá)式和∠ABC的度數(shù);
(3)P為線段BC上一點(diǎn),連接AC,AP,若∠ACB=∠PAB,求點(diǎn)P的坐標(biāo).
【答案】(1)y=x2﹣2x﹣3;(2)45°;(3)P(,﹣).
【解析】
試題(1)直接將A,C點(diǎn)坐標(biāo)代入拋物線解析式求出即可;
(2)首先求出B點(diǎn)坐標(biāo),進(jìn)而利用待定系數(shù)法求出直線BC的解析式,進(jìn)而利用CO,BO的長(zhǎng)求出∠ABC的度數(shù);
(3)利用∠ACB=∠PAB,結(jié)合相似三角形的判定與性質(zhì)得出BP的長(zhǎng),進(jìn)而得出P點(diǎn)坐標(biāo).
解:(1)將點(diǎn)A的坐標(biāo)(﹣1,0),點(diǎn)C的坐標(biāo)(0,﹣3)代入拋物線解析式得:
,
解得:,
故拋物線解析式為:y=x2﹣2x﹣3;
(2)由(1)得:0=x2﹣2x﹣3,
解得:x1=﹣1,x2=3,故B點(diǎn)坐標(biāo)為:(3,0),
設(shè)直線BC的解析式為:y=kx+d,
則,
解得:,
故直線BC的解析式為:y=x﹣3,
∵B(3,0),C(0,﹣3),
∴BO=OC=3,
∴∠ABC=45°;
(3)過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,
∵∠ACB=∠PAB,∠ABC=∠PBA,
∴△ABP∽△CBA,
∴=,
∵BO=OC=3,
∴BC=3,
∵A(﹣1,0),B(3,0),
∴AB=4,
∴=,
解得:BP=,
由題意可得:PD∥OC,
∴DB=DP=,
∴OD=3﹣=,
則P(,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=17,BC=21,AC=10,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿著CB運(yùn)動(dòng),速度為每秒3個(gè)單位,到達(dá)點(diǎn)B時(shí)運(yùn)動(dòng)停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)解答下列問(wèn)題:
(1)求BC上的高;
(2)當(dāng)t為何值時(shí),△ACP為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩種機(jī)器人都被用來(lái)搬運(yùn)化工原料,A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30kg,A型機(jī)器人搬運(yùn)900kg與B型機(jī)器人搬運(yùn)600kg所用時(shí)間相等,兩種機(jī)器人每小時(shí)分別搬運(yùn)多少化工原料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= ∠CED=α.
(1)如圖1,將AD、EB延長(zhǎng),延長(zhǎng)線相交于點(diǎn)0.
①求證:BE= AD;
②用含α的式子表示∠AOB的度數(shù)(直接寫(xiě)出結(jié)果);
(2)如圖2,當(dāng)α=45°時(shí),連接BD、AE,作CM⊥AE于M點(diǎn),延長(zhǎng)MC與BD交于點(diǎn)N.求證:N是BD的中點(diǎn).
注:第(2)問(wèn)的解答過(guò)程無(wú)需注明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖所示,在直角坐標(biāo)系中,第一次將△OAB變換成,第二次將變換成,第三次將變換成,已知,,,,,,.
(1)觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將變換成,則的坐標(biāo)為 ,的坐標(biāo)為 .
(2)可以發(fā)現(xiàn)變換過(guò)程中……的縱坐標(biāo)均為 .
(3)按照上述規(guī)律將△OAB進(jìn)行n次變換得到,則可知的坐標(biāo)為 , 的坐標(biāo)為 .
(4)線段的長(zhǎng)度為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ADC=90°,點(diǎn)E是BC邊上一動(dòng)點(diǎn),聯(lián)結(jié)AE,過(guò)點(diǎn)E作AE的垂線交直線CD于點(diǎn)F.已知AD=4cm,CD=2cm,BC=5cm,設(shè)BE的長(zhǎng)為xcm,CF的長(zhǎng)為ycm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.
下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了x與y的幾組值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 |
y/cm | 2.5 | 1.1 | 0 | 0.9 | 1.5 | 1.9 | 2 | 1.9 |
| 0.9 | 0 |
(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))
(2)建立直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:當(dāng)BE=CF時(shí),BE的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲從商販A處購(gòu)買(mǎi)了若干斤西瓜,又從商販B處購(gòu)買(mǎi)了若干斤西瓜.A、B兩處所購(gòu)買(mǎi)的西瓜重量之比為3:2,然后將買(mǎi)回的西瓜以從A、B兩處購(gòu)買(mǎi)單價(jià)的平均數(shù)為單價(jià)全部賣(mài)給了乙,結(jié)果發(fā)現(xiàn)他賠錢(qián)了,這是因?yàn)椋ā 。?/span>
A. 商販A的單價(jià)大于商販B的單價(jià)
B. 商販A的單價(jià)等于商販B的單價(jià)
C. 商版A的單價(jià)小于商販B的單價(jià)
D. 賠錢(qián)與商販A、商販B的單價(jià)無(wú)關(guān)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com