將一個(gè)量角器和一個(gè)含30度角的直角三角板如圖(1)放置,圖(2)是由他抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線(xiàn)上,AB切半圓O于點(diǎn)F,且BC=OD。
(1)求證:DB∥CF。
(2)當(dāng)OD=2時(shí),若以O(shè)、B、F為頂點(diǎn)的三角形與△ABC相似,求弧的長(zhǎng)度。
證明:(1)連接OF,如圖
    ∵AB切半圓O于F,
   ∴OF⊥AB
   ∵CB⊥AB ,
   ∴BC∥OF。
    ∵BC=OD,OD=OF,
    ∴BC=OF。
    ∴四邊形OBCF是平行四邊形,
     ∴DB∥CF。
(2) ∵以O(shè)、B、F為頂點(diǎn)的三角形與△ABC相似,
       ∠OFB=∠ABC=90°,
    ∵∠OBF=∠BFC,∠BFC>∠A,
    ∴∠OBF>∠A ∴∠OBF與∠A不可能是對(duì)應(yīng)角
    ∴∠A與∠BOF是對(duì)應(yīng)角。
    ∴∠BOF=30° 弧的長(zhǎng)度=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)量角器和一個(gè)含30度角的直角三角板如圖(1)放置,圖(2)是由它抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線(xiàn)上,AB切半圓O于點(diǎn)F,且BC=OD.
(1)求證:DB∥CF;
(2)當(dāng)OD=2時(shí),若以O(shè)、B、F為頂點(diǎn)的三角形與△ABC相似,求OB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)量角器和一個(gè)含30°角的直角三角板如圖1放置,圖2是由它抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線(xiàn)上,AB切半圓O于點(diǎn)F,BC=OD
(1)求證:FC∥DB;
(2)當(dāng)OD=3,sin∠ABD=
35
時(shí),求AF的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)量角器和一個(gè)含30度角的直角三角板如圖1放置,圖2是由它抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線(xiàn)上,AB切半圓O于點(diǎn)F,且BC=OD.求證:DB∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)量角器和一個(gè)含30度角的直角三角板如圖(1)放置,圖(2)是由它抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線(xiàn)上,AB切半圓O于點(diǎn)F,且BC=OD.
(1)求證:DB∥CF;
(2)當(dāng)OD=2時(shí),若以O(shè)、B、F為頂點(diǎn)的三角形與△ABC相似,求弧
EF
的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案