【題目】在平面直角坐標(biāo)系中,直線y=﹣x+3與x軸、y軸分別交于A、B,在△AOB內(nèi)部作正方形,使正方形的四個頂點都落在該三角形的邊上,則此正方形落在x軸正半軸的頂點坐標(biāo)為

【答案】(1.5,0)或(1,0)
【解析】解:分兩種情況;
①如圖1,令x=0,則y=3,令y=0,則x=3,
∴OA=OB=3,
∴∠BAO=45°,
∵DE⊥OA,
∴DE=AE,
∵四邊形COED是正方形,
∴OE=DE,
∴OE=AE,
∴OE=OA=1.5,
∴E(1.5,0);
②如圖2,由①知△OFC,△EFA是等腰直角三角形,
∴CF=OF,AF=EF,
∵四邊形CDEF是正方形,
∴EF=CF,
∴AF=×OF=2OF,
∴OA=OF+2OF=3,
∴OF=1,
∴F(1,0).
所以答案是(1.5,0)或(1,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,∠A+∠C=100°,則∠B=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1納米=109米,將50納米用科學(xué)記數(shù)法表示為(

A. 50×109B. 5×109C. 0.5×109D. 5×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校規(guī)定學(xué)生的學(xué)期數(shù)學(xué)成績滿分為100分,其中平時學(xué)習(xí)成績占30%,期末卷面成績占70%,小明的兩項成績(百分制)依次是80分,90分,則小明這學(xué)期的數(shù)學(xué)成績是( 。

A. 83B. 86C. 87D. 92.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=1是方程x2+mx+3=0的一個實數(shù)根,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工人若每小時生產(chǎn)38個零件,在規(guī)定時間內(nèi)還有15個不能完成,若每小時生產(chǎn)42個零件,則可以超額完成5個,問:規(guī)定時間是多少?設(shè)規(guī)定時間為x小時,則可列方程為( 。

A. 38x﹣15=42x+5 B. 38x+15=42x﹣5 C. 42x+38x=15+5 D. 42x﹣38x=15﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副三角板的直角頂點重合放置于A處(兩塊三角板可以在同一平面內(nèi)自由轉(zhuǎn)動),則下列結(jié)論一定成立的是(
A.∠BAD≠∠EAC
B.∠DAC﹣∠BAE=45°
C.∠BAE+∠DAC=180°
D.∠DAC>∠BAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+2xm+1交x軸于點A(a,0)和Bb,0),交y軸于點C,拋物線的頂點為D,下列四個判斷:①當(dāng)x>0時,y>0;②若a=-1,則b=4;③拋物線上有兩點Px1,y1)和Qx2y2),若x1<1< x2,且x1x2>2,則y1> y2;④點C關(guān)于拋物線對稱軸的對稱點為E,點GF分別在x軸和y軸上,當(dāng)m=2時,四邊形EDFG周長的最小值為6.其中正確判斷的序號是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)y=﹣2x+6的圖象與x軸交于點A,與y軸交于點B.試求出△OAB的面積.

查看答案和解析>>

同步練習(xí)冊答案