【題目】如圖,ABC的面積為8cm2,AP垂直∠B的平分線BPP,則PBC的面積為( )

A. 3cm2 B. 4cm2 C. 5cm2 D. 6cm2

【答案】B

【解析】

延長(zhǎng)APBCE,根據(jù)AP垂直∠B的平分線BPP,即可求出ABP≌△BEP,又知APCCPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.

延長(zhǎng)APBCE,

AP垂直∠B的平分線BPP,

ABP=EBP,

又知BP=BP,APB=BPE=90°,

∴△ABP≌△BEP,

SABP=SBEP,AP=PE,

∴△APCCPE等底同高

SAPC=SPCE,

SPBC=SPBE+SPCE=SABC=4cm2,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生對(duì)安全知識(shí)的掌握情況,學(xué)校隨機(jī)抽取了20名學(xué)生進(jìn)行安全知識(shí)測(cè)試,測(cè)試成績(jī)(百分制)如下:

78、8693、81、97、8879、9387、9093、98、88、8194、95、81、98、99、94

(1)根據(jù)上述數(shù)據(jù),將下列表格補(bǔ)充完整(每組含最小值):

成績(jī)/

70~80

80~90

90~100

人數(shù)

7

(2)若用(1)中數(shù)據(jù)制作扇形統(tǒng)計(jì)圖,求出表示“70~80”扇形的圓心角度數(shù);

(3)已知該校共有2000名學(xué)生,若規(guī)定成績(jī)90分及以上為優(yōu)秀,估計(jì)該校學(xué)生對(duì)安全知識(shí)掌握情況為優(yōu)秀的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑均為整數(shù)的同心圓組成的“圓環(huán)帶”,若大圓的弦AB與小圓相切于點(diǎn)P,且弦AB的長(zhǎng)度為定值 , 則滿足條件的不全等的“圓環(huán)帶”有( 。

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.無數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC=∠DCB,添加一個(gè)條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( 。

A. A=∠D B. ABDC C. ACDB D. OBOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家把數(shù)1,3,6,10,15,21,……叫做三角形數(shù),它有一定的規(guī)律性,若把第一個(gè)三角形數(shù)記為a1 ,第二個(gè)三角數(shù)形記為a 2 ,……,第n個(gè)三角形數(shù)記為an,計(jì)算a2-a1,a 3-a2……由此推算a 100-a 99 =________;a100=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠B=90°,O是AB上的一點(diǎn),以O(shè)為圓心,OB為半徑的圓與AB交于點(diǎn)E,與AC切于點(diǎn)D.若AD=2 , 且AB、AE的長(zhǎng)是關(guān)于x的方程x2﹣8x+k=0的兩個(gè)實(shí)數(shù)根.
(1)求⊙O的半徑.
(2)求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB為⊙O的直徑,P為AB延長(zhǎng)線上的任意一點(diǎn),過點(diǎn)P作⊙O的切線,切點(diǎn)為C,∠APC的平分線PD與AC交于點(diǎn)D.

(1)如圖1,若∠CPA恰好等于30°,求∠CDP的度數(shù);
(2)如圖2,若點(diǎn)P位于(1)中不同的位置,(1)的結(jié)論是否仍然成立?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十一長(zhǎng)假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.

(1)若兩人同時(shí)出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時(shí)能相遇?

(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時(shí)二人相遇,則小張的車速應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是 的中點(diǎn),連接AC、BC,則圖中陰影部分面積是(
A. ﹣2
B. ﹣2
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案