在直角坐標(biāo)系中設(shè)法找到若干個(gè)點(diǎn),使得連結(jié)各點(diǎn)所得的封閉圖形是如圖所示的“+”字。
解:如圖建立直角坐標(biāo)系,它是連接(-3,-1),(-1,-1),(-1,-3),(2,-3),(2,-1),(4,-1),(4,2),(2,2),(2,4),(-1,4),(-1,2),(-3,2),(-3,-1)點(diǎn)組成的。由于選取坐標(biāo)系的不同,所以得出的坐標(biāo)也會(huì)不同。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3);B1(4,0),B2(8,0),B3(16,0).
(1)觀察每次變換前后的三角形有何變化,找出規(guī)律,按次變化規(guī)律再將△OA3B3變換成△OA4B4,則A4的坐標(biāo)是
(16,3)
,B4的坐標(biāo)是
(32,0)

(2)若按第(1)題找到的規(guī)律將△OAB進(jìn)行了n次變換,得到△OAnBn,比較每次變換中三角形頂點(diǎn)坐標(biāo)有何變化,找出規(guī)律,推測(cè)An的坐標(biāo)是
(2n,3)
.Bn的坐標(biāo)是
(2n+1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•建寧縣質(zhì)檢)如圖:在直角坐標(biāo)系中,以點(diǎn)A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C兩點(diǎn),與y軸相交于D、E兩點(diǎn).
(1)若拋物線y=
1
4
x2+bx+c
經(jīng)過(guò)C、D兩點(diǎn),求此拋物線的解析式,并判斷點(diǎn)B是否在這條拋物線上?
(2)過(guò)點(diǎn)E的直線y=kx+m交x軸于F(-
16
3
,0),求此直線的解析式,這條直線是⊙A的切線嗎?請(qǐng)說(shuō)明理由;
(3)探索:是否能在(1)中的拋物線上找到一點(diǎn)Q,使直線BQ與x軸正方向所夾銳角的正切值等于
1
4
?若能,請(qǐng)直接寫出Q點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)尺規(guī)作圖.

要求:寫出作法(用詞準(zhǔn)確精煉);保留作圖痕跡(圖形清晰,規(guī)范),已知:如圖△ABC.
求作:△ABC的內(nèi)角平分線AD.
作法:
(2)如圖2,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,-----依此類推.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),…;B(2,0),B1(4,0),B2(8,0),B3(16,0),….
①觀察每次變換三角形的頂點(diǎn)變化規(guī)律,按此變換規(guī)律,經(jīng)過(guò)
6
6
次變換后,A、B的對(duì)應(yīng)點(diǎn)坐標(biāo)分別為(64,3)、(128,0).
②若按第①小題找到的規(guī)律將△OAB進(jìn)行了n次變換,得到△OAnBn,推測(cè)An的坐標(biāo)是
(2n,3)
(2n,3)
,Bn的坐標(biāo)是
(2n+1,0)
(2n+1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年人教版七年級(jí)下第六章第一節(jié)平面直角坐標(biāo)系(2)練習(xí)卷(解析版) 題型:解答題

在直角坐標(biāo)系中設(shè)法找到若干個(gè)點(diǎn),使得連結(jié)各點(diǎn)所得的封閉圖形是如圖所示的“+”字.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案