數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整數(shù).
對于這個(gè)求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進(jìn)行討論.
如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實(shí),那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的.而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個(gè)平行四邊形.此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2
精英家教網(wǎng)
(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
分析:根據(jù)例題所示選擇合適的圖形來解決問題,對于題目中所給的奇數(shù)相加的公式,我們不難發(fā)現(xiàn)它的遞增也是有規(guī)律的,所以我們?nèi)钥梢詤⒄绽幼鞒鱿鄳?yīng)的圖形利用平行四邊形法求解;另外我們可以發(fā)現(xiàn)公式的增值是2,我們可以看做是在原點(diǎn)的基礎(chǔ)上伸出兩個(gè)端點(diǎn)依次加2,然后這n個(gè)圖形相組合,可以得到多個(gè)答案,選擇你認(rèn)為最為簡單的圖形進(jìn)行解答.
解答:解:(1)
精英家教網(wǎng)
因?yàn)榻M成此平行四邊形的小圓圈共有n行,每行有[(2n-1)+1]個(gè),即2n個(gè),
所以組成此平行四邊形的小圓圈共有(n×2n)個(gè),即2n2個(gè).
∴1+3+5+7+…+(2n-1)=
n[(2n-1)+1]
2
=n2

(2)
精英家教網(wǎng)
因?yàn)榻M成此正方形的小圓圈共有n行,每行有n個(gè),所以共有(n×n)個(gè),即n2個(gè).
∴1+3+5+7+…+(2n-1)=n×n=n2
點(diǎn)評:把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀題:我國著名數(shù)學(xué)家華羅庚說過:“數(shù)缺形時(shí)少直觀,形小數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔離分家事萬休.”數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例:求1+2+3+4+…+n的值,其中n是正整數(shù);
如果采用數(shù)形結(jié)合的方法,現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n的值,方案如下:
如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3…n個(gè)小圓圈的個(gè)數(shù)恰好為所求式子1+2+3+4+…+n的值,為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個(gè)平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

①仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n為正整數(shù)(要求畫出圖形,寫出結(jié)果即可)
②試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù)(要求畫出圖形,寫出結(jié)果即可)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我國著名數(shù)學(xué)家華羅庚曾說過:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”.?dāng)?shù)學(xué)中,數(shù)和形是兩個(gè)最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.
數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如:求1+2+3+4+…+n的值,其中n是正整數(shù).
對于這個(gè)求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進(jìn)行討論.
如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實(shí),那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的.而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個(gè)平行四邊形.此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,精英家教網(wǎng)并利用圖形做必要的推理說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我國著名數(shù)學(xué)家華羅庚曾說過:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”.?dāng)?shù)學(xué)中,數(shù)和形是兩個(gè)最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.
數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如:求1+2+3+4+…+n的值,其中n是正整數(shù).
對于這個(gè)求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進(jìn)行討論.
如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實(shí),那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的.而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個(gè)平行四邊形.此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為數(shù)學(xué)公式,即1+2+3+4+…+n=數(shù)學(xué)公式
(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我國著名數(shù)學(xué)家華羅庚曾說過:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”.?dāng)?shù)學(xué)中,數(shù)和形是兩個(gè)最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.

數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.

例如,求1+2+3+4+…+n的值,其中n是正整數(shù).

對于這個(gè)求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進(jìn)行討論.

如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實(shí),那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的.而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個(gè)平行四邊形.此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為,即1+2+3+4+…+n=

(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

同步練習(xí)冊答案