【題目】在同一平面內,△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點旋轉180°得到△CEA,將△ABD繞著邊AD的中點旋轉180°得到△DFA,如圖②,請完成下列問題:
(1)試猜想四邊形ABDF是什么特殊四邊形,并說明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.
【答案】
(1)解:四邊形ABDF是菱形.理由如下:
∵△ABD繞著邊AD的中點旋轉180°得到△DFA,
∴AB=DF,BD=FA,
∵AB=BD,
∴AB=BD=DF=FA,
∴四邊形ABDF是菱形
(2)證明:∵四邊形ABDF是菱形,
∴AB∥DF,且AB=DF,
∵△ABC繞著邊AC的中點旋轉180°得到△CEA,
∴AB=CE,BC=EA,
∴四邊形ABCE為平行四邊形,
∴AB∥CE,且AB=CE,
∴CE∥FD,CE=FD,
∴四邊形CDEF是平行四邊形
【解析】(1)根旋轉的性質得AB=DF,BD=FA,由于AB=BD,所以AB=BD=DF=FA,則可根據菱形的判定方法得到四邊形ABDF是菱形;(2)由于四邊形ABDF是菱形,則AB∥DF,且AB=DF,再根據旋轉的性質易得四邊形ABCE為平行四邊形,根據平行四邊形的性質得AB∥CE,且AB=CE,
所以CE∥FD,CE=FD,所以可判斷四邊形CDEF是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D,E分別是的邊BC上兩點,請你在下列三個式子,,中,選兩個作為條件,余下的一個作為結論,編寫一個說理題,并進行解答.
如圖,已知點D,E分別是的邊BC上兩點______,______,那么______嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0( )
A.沒有實根
B.只有一個實根
C.有兩個實根,且一根為正,一根為負
D.有兩個實根,且一根小于1,一根大于2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點C(0,2).
(1)求拋物線的解析式;
(2)若點D為該拋物線上的一個動點,且在直線AC上方,當以A,C,D為頂點的三角形面積最大時,求點D的坐標及此時三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】相傳有個人不講究說話藝術常引起誤會,一天他擺宴席請客,他看到還有幾個人沒來,就自言自語:“怎么該來的還不來啊?”客人聽了心里想難道我們是不該來的,于是有一半客人走了.他一看十分著急,又說:“不該走的倒走了!”剩下的人一聽,是我們該走啊!又有剩下的三分之二的人離開了.他著急地一拍大腿,連說:“我說的不是他們.”于是最后剩下的四個人也都告辭走了.聰明的你能知道剛開始來的客人個數(shù)是( )
A. 24 B. 18 C. 16 D. 15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD是菱形,E是BD延長線上一點,F(xiàn)是DB延長線上一點,且DE=BF.請你以F為一個端點,和圖中已標明字母的某一點連成一條新的線段,猜想并證明它和圖中已有的某一條線段相等(只須證明一組線段相等即可).
(1)連接 ;
(2)猜想: = ;
(3)證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,B是線段AD上一動點,沿A→D→A以 2 cm/s的速度往返運動1次,C是線段BD的中點,AD=10 cm,設點B的運動時間為t秒(0≤t≤10).
(1)當t=2時,
①AB=____cm;
②求線段CD的長度;
(2)用含t的代數(shù)式表示運動過程中AB的長;
(3)在運動過程中,若AB的中點為E,則EC的長是否變化?若不變,求出EC的長;若發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,
(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β(α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從(1)、(2)的結果中,你發(fā)現(xiàn)了什么規(guī)律,請寫出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司擬為貧困山區(qū)建一所希望小學,甲、乙兩個工程隊提交了投標方案,若獨立完成該項目,則甲工程隊所用時間是乙工程隊的1.5倍;若甲、乙兩隊合作完成該項目,則共需72天.
(1)甲、乙兩隊單獨完成建校工程各需多少天?
(2)若由甲工程隊單獨施工,平均每天的費用為0.8萬元,為了縮短工期,該公司選擇了乙工程隊,但要求其施工的總費用不能超過甲工程隊,求乙工程隊平均每天的施工費用最多為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com