【題目】如圖,已知四邊形為正方形,,點(diǎn)為對角線上一動點(diǎn),連接,過點(diǎn)作.交于點(diǎn),以、為鄰邊作矩形,連接.
(1)求證:矩形是正方形;
(2)探究:的值是否為定值?若是,請求出這個定值;若不是,請說明理由.
【答案】(1)見解析 (2)是定值,8
【解析】
(1)過E作EM⊥BC于M點(diǎn),過E作EN⊥CD于N點(diǎn),即可得到EN=EM,然后判斷∠DEN=∠FEM,得到△DEN≌△FEM,則有DE=EF即可;
(2)同(1)的方法證出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=8即可.
(1)如圖所示,過E作EM⊥BC于M點(diǎn),過E作EN⊥CD于N點(diǎn),
∵正方形ABCD,
∴∠BCD=90°,∠ECN=45°,
∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,
∴四邊形EMCN為正方形,
∵四邊形DEFG是矩形,
∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,
∴∠DEN=∠MEF,
又∠DNE=∠FME=90°,
在△DEN和△FEM中,
∴△DEN≌△FEM(ASA),
∴ED=EF,
∴矩形DEFG為正方形,
(2)CE+CG的值為定值,理由如下:
∵矩形DEFG為正方形,
∴DE=DG,∠EDC+∠CDG=90°,
∵四邊形ABCD是正方形,
∵AD=DC,∠ADE+∠EDC=90°,
∴∠ADE=∠CDG,
在△ADE和△CDG中,
∴△ADE≌△CDG(SAS),
∴AE=CG,
∴AC=AE+CE=AB=×4=8,
∴CE+CG=8是定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形ABC的腰長為2,直角頂點(diǎn)A在直線l:y=2x+2上移動,且斜邊BC∥x軸,當(dāng)△ABC在直線l上移動時,BC的中點(diǎn)D滿足的函數(shù)關(guān)系式為( )
A. y=2x B. y=2x+1 C. y=2x+2﹣ D. y=2x﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,BC邊上有10個不同的點(diǎn)P1,P2,……,P10, 記(i = 1,2,……,10),那么 M1+M2+……+M10的值為( )
A. 4 B. 14 C. 40 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B處的仰角為30,看這棟高樓底部C處的俯角為60,若熱氣球與高樓的水平距離為90 m,則這棟高樓有多高?(結(jié)果保留整數(shù),≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛大巴車在一條南北方向的道路上來回運(yùn)送旅客,某一天早晨該車從A地出發(fā),晚上到達(dá)B地,預(yù)定向北為正方向,當(dāng)天行駛記錄如下(單位:千米)+18,-9,+7,-14,-6,+13,-6,-8 請你根據(jù)計算回答下列問題:
(1)B地在A地何方?相距多少千米?
(2)該車這一天共行駛多少千米?
(3)若該車每千米耗油0.5升,這一天共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=45°,AB的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)D;AC的垂
直平分線交AC于點(diǎn)G,交BC與點(diǎn)F,連接AD、AF,若AC=,BC=9,則DF等于( )
A. B. C. 4 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com