如圖,已知四邊形ABCD外接⊙O的半徑為5,對(duì)角線AC與BD的交點(diǎn)為E,且AB2=AE•AC,BD=8,求△ABD的面積.

解:如圖,連接OA、OB,交DB于F;
∵AB2=AE•AC,即;
又∵∠BAE=∠CAB,
∴△ABE∽△ACB;
∴∠DBA=∠BCA;
而∠BCA=∠BDA,∴∠DBA=∠BDA;
∴AB=AD,∴OA⊥BD,且F為BD的中點(diǎn);
∴BF=4;
在Rt△BOF中,OB2=BF2+OF2,∴OF=3;
而OA=5,∴AF=2;
∴S△ABD==8.
分析:求△ABD的面積,已知了底邊BD的長(zhǎng),因此只需求出BD邊上的高即可.連接OA、OB,交DB于F;已知AB2=AE•AC,易證得△ABE∽△ACB;可得∠BCA=∠DBA,即弧AD=弧AB,根據(jù)垂徑定理,可知OA垂直平分BD;易求得OF=3,則AF=2,由此可求得△ABD的面積.
點(diǎn)評(píng):本題綜合考查了相似三角形的判定和性質(zhì)、圓周角定理、垂徑定理、勾股定理、三角形面積公式等知識(shí),綜合性強(qiáng),難度稍大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點(diǎn),AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長(zhǎng)線分別交于點(diǎn)F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊(cè)答案