已知:如圖,C為半圓O上一點(diǎn),AC=CE,過點(diǎn)C作直徑AB的垂線CP,弦AE分別交PC、CB于點(diǎn)精英家教網(wǎng)D、F.
(1)求證:AD=CD;
(2)若DF=
4
3
3
,∠CAE=30°,求陰影部分的面積.
分析:(1)根據(jù)等弧所對(duì)的圓周角相等,和互余的定義等量代換即可得出AD=CD;
(2)陰影部分的面積=扇形的面積-三角形的面積,根據(jù)面積公式計(jì)算即可.
解答:精英家教網(wǎng)(1)證明:∵AC=CE,
∴弧AC=弧CE,
∴∠CAE=∠B.
∵CP⊥AB,
∴∠CPB=90°
∴∠B+∠BCP=90°.
∵AB是直徑,
∴∠ACB=90°.
∴∠ACP+∠BCP=90°.
∴∠B=∠ACP.
∴∠CAE=∠ACP.(1分)
∴AD=CD.(2分)

(2)解:連接OC,
∵∠CAE=30°,
∴∠ACD=30°,∠COA=60°.
∴∠CDF=60°.
∵AB是直徑,∴∠ACB=90°.
∴∠BCP=60°.
∴∠BCP=∠DCF=∠CFD=60°.
∴AD=CD=DF=
4
3
3
.(3分)
∵OA=OC,∴△AOC是等邊三角形.
∴∠CAO=60°.
∴∠DAP=30°.
∵CP⊥OA,
∴AP=ADcos30°=2.
∴OA=2AP=4.(4分)
∴DP=ADsin30°=
2
3
3

∴CP=CD+DP=2
3
.(5分)
∴S陰影=S扇形-S△AOC=
60×π×16
360
-
1
2
×4×2
3
=
3
-4
3
.(6分)
點(diǎn)評(píng):本題主要考查了等弧所對(duì)的圓周角相等的性質(zhì)及扇形的面積公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知.如圖,BC為半圓O的直徑,F(xiàn)是半圓上異于B、C的一點(diǎn),A是
BF
的中點(diǎn),AD⊥BC于點(diǎn)D,BF交精英家教網(wǎng)AD于點(diǎn)E.
(1)求證:BE•BF=BD•BC;
(2)試比較線段BD與AE的大小,并說明道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點(diǎn),四邊形ABCD的對(duì)角線AC、BD交于精英家教網(wǎng)點(diǎn)E.
(1)求證:△ABE∽△DBC;
(2)已知BC=
5
2
,CD=
5
2
,求sin∠AEB的值;
(3)在(2)的條件下,求弦AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB為半圓的直徑,弦CD∥AB,∠CAD=30°,若AB長(zhǎng)為8cm,求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB為半圓的直徑,O為圓心,C為半圓上一點(diǎn),OE⊥弦AC于點(diǎn)D,交⊙O于點(diǎn)E.若AC=8cm,DE=2cm.求OD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案