(2004•泉州)用配方法解方程:6x2-x-12=0.
【答案】分析:本題要求用配方法解一元二次方程,首先將常數(shù)項(xiàng)移到等號(hào)的右側(cè),把二次項(xiàng)系數(shù)化為1,將等號(hào)左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方,即可將等號(hào)左邊的代數(shù)式寫(xiě)成完全平方形式.
解答:解:原方程可化為x2-x=2,
∴x2-x+(2=2+(2,
配方得(x-2=,
∴x-,
解得x1=,x2=-
點(diǎn)評(píng):配方法的一般步驟:
①把常數(shù)項(xiàng)移到等號(hào)的右邊;
②把二次項(xiàng)的系數(shù)化為1;
③等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.
選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2004•泉州)用一塊邊長(zhǎng)為60cm的正方形薄鋼片制作一個(gè)長(zhǎng)方體盒子:
(1)如果要做成一個(gè)沒(méi)有蓋的長(zhǎng)方體盒子,可先在薄鋼片的四個(gè)角上截去四個(gè)相同的小正方形(如圖1),然后把四邊折合起來(lái)(如圖2);
①求做成的盒子底面積y(cm2)與截去小正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系式;
②當(dāng)做成的盒子的底面積為900cm2時(shí),試求該盒子的容積.
(2)如果要做成一個(gè)有蓋的長(zhǎng)方體盒子,制作方案要求同時(shí)符合下列兩個(gè)條件:
①必須在薄鋼片的四個(gè)角上各截去一個(gè)四邊形;(其余部分不能裁截)
②折合后薄鋼片既無(wú)空隙又不重疊地圍成各盒面.
請(qǐng)你畫(huà)出符合上述制作方案的一種草圖(不必說(shuō)明畫(huà)法與根據(jù));并求當(dāng)?shù)酌娣e為800cm2時(shí),該盒子的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2004•泉州)用配方法解方程:6x2-x-12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•泉州)用一塊邊長(zhǎng)為60cm的正方形薄鋼片制作一個(gè)長(zhǎng)方體盒子:
(1)如果要做成一個(gè)沒(méi)有蓋的長(zhǎng)方體盒子,可先在薄鋼片的四個(gè)角上截去四個(gè)相同的小正方形(如圖1),然后把四邊折合起來(lái)(如圖2);
①求做成的盒子底面積y(cm2)與截去小正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系式;
②當(dāng)做成的盒子的底面積為900cm2時(shí),試求該盒子的容積.
(2)如果要做成一個(gè)有蓋的長(zhǎng)方體盒子,制作方案要求同時(shí)符合下列兩個(gè)條件:
①必須在薄鋼片的四個(gè)角上各截去一個(gè)四邊形;(其余部分不能裁截)
②折合后薄鋼片既無(wú)空隙又不重疊地圍成各盒面.
請(qǐng)你畫(huà)出符合上述制作方案的一種草圖(不必說(shuō)明畫(huà)法與根據(jù));并求當(dāng)?shù)酌娣e為800cm2時(shí),該盒子的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•泉州)用配方法解方程:6x2-x-12=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案