用配方法解關(guān)于x的一元二次方程ax2+bx+c=0.

解:∵關(guān)于x的方程ax2+bx+c=0是一元二次方程,
∴a≠0.
∴由原方程,得
x2+x=-,
等式的兩邊都加上,得
x2+x+=-+,
配方,得
(x+2=-,
開方,得
x+,
解得x1=,x2=
當(dāng)b2-4ac<0時,原方程無實數(shù)根.
分析:此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確應(yīng)用,把左邊配成完全平方式,右邊化為常數(shù).
點評:本題考查了配方法解一元二次方程.用配方法解一元二次方程的步驟:
(1)形如x2+px+q=0型:第一步移項,把常數(shù)項移到右邊;第二步配方,左右兩邊加上一次項系數(shù)一半的平方;第三步左邊寫成完全平方式;第四步,直接開方即可.
(2)形如ax2+bx+c=0型,方程兩邊同時除以二次項系數(shù),即化成x2+px+q=0,然后配方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若關(guān)于x,y的二元一次方程組
x+y=5k
x-y=9k
的解也是二元一次方程2x+3y=6的解,則k的值為
 
;把二次函數(shù)y=
1
4
x2-x+3
用配方法化成y=a(x-h)2+k的形式
 
;點A的坐標(biāo)為(
2
,0),把點A繞著坐標(biāo)原點順時針旋轉(zhuǎn)135°到點B,那么點B的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•隨州)在一次數(shù)學(xué)活動課上,老師出了一道題:
(1)解方程x2-2x-3=0
巡視后,老師發(fā)現(xiàn)同學(xué)們解此道題的方法有公式法、配方法和十字相乘法(分解因式法).接著,老師請大家用自己熟悉的方法解第二道題:
(2)解關(guān)于x的方程mx2+(m-3)x-3=0(m為常數(shù),且m≠0).
老師繼續(xù)巡視,及時觀察、點撥大家,再接著,老師將第二道題變式為第三道題:
(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù))
①求證:不論m為何值,此函數(shù)的圖象恒過x軸、y軸上的兩個定點(設(shè)x軸上的定點為A,y軸上的定點為C);
②若m≠0時,設(shè)此函數(shù)的圖象與x軸的另一個交點為B.當(dāng)△ABC為銳角三角形時,觀察圖象,直接寫出m的取值范圍.
請你也用自己熟悉的方法解上述三道題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶在一次數(shù)學(xué)活動課上,老師出了一道題:
(1)解方程x2-2x-3=0
巡視后,老師發(fā)現(xiàn)同學(xué)們解此道題的方法有公式法、配方法和十字相乘法(分解因式法).接著,老師請大家用自己熟悉的方法解第二道題:
(2)解關(guān)于x的方程mx2+(m-3)x-3=0(m為常數(shù),且m≠0).
老師繼續(xù)巡視,及時觀察、點撥大家,再接著,老師將第二道題變式為第三道題:
(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù))
①求證:不論m為何值,此函數(shù)的圖象恒過x軸、y軸上的兩個定點(設(shè)x軸上的定點為A,y軸上的定點為C);
②若m≠0時,設(shè)此函數(shù)的圖象與x軸的另一個交點為B.當(dāng)△ABC為銳角三角形時,觀察圖象,直接寫出m的取值范圍.
請你也用自己熟悉的方法解上述三道題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在-次數(shù)學(xué)活動課上,老師出了-道題:

  (1)解方程x2-2x-3=0.

    巡視后老師發(fā)現(xiàn)同學(xué)們解此題的方法有公式法、配方法和十字相乘法(分解因式法)。

  接著,老師請大家用自己熟悉的方法解第二道題:

  (2)解關(guān)于x的方程mx2+(m一3)x一3=0(m為常數(shù),且m≠0).

    老師繼續(xù)巡視,及時觀察、點撥大家.再接著,老師將第二道題變式為第三道題:

(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù)).

 ①求證:不論m為何值,此函數(shù)的圖象恒過x軸、y軸上的兩個定點(設(shè)x軸上的定點為A,y軸上的定點為C);   

  ②若m≠0時,設(shè)此函數(shù)的圖象與x軸的另一個交點為反B,當(dāng)△ABC為銳角三角形時,求m的取值范圍;當(dāng)△ABC為鈍角三角形時,觀察圖象,直接寫出m的取值范圍.

   請你也用自己熟悉的方法解上述三道題.   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省隨州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

在一次數(shù)學(xué)活動課上,老師出了一道題:
(1)解方程x2-2x-3=0
巡視后,老師發(fā)現(xiàn)同學(xué)們解此道題的方法有公式法、配方法和十字相乘法(分解因式法).接著,老師請大家用自己熟悉的方法解第二道題:
(2)解關(guān)于x的方程mx2+(m-3)x-3=0(m為常數(shù),且m≠0).
老師繼續(xù)巡視,及時觀察、點撥大家,再接著,老師將第二道題變式為第三道題:
(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù))
①求證:不論m為何值,此函數(shù)的圖象恒過x軸、y軸上的兩個定點(設(shè)x軸上的定點為A,y軸上的定點為C);
②若m≠0時,設(shè)此函數(shù)的圖象與x軸的另一個交點為B.當(dāng)△ABC為銳角三角形時,觀察圖象,直接寫出m的取值范圍.
請你也用自己熟悉的方法解上述三道題.

查看答案和解析>>

同步練習(xí)冊答案