如圖,已知直角梯形ABCD中,AD∥BC,Ð B=90°,AB=12 cm,BC=8 cm,DC=13 cm,動點(diǎn)P沿A→D→C線路以2 cm/秒的速度向C運(yùn)動,動點(diǎn)Q沿B→C線路以1 cm/秒的速度向C運(yùn)動.P、Q兩點(diǎn)分別從A、B同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)C點(diǎn)時,另一點(diǎn)也隨之停止.設(shè)運(yùn)動時間為t秒,△PQB的面積為ym2

(1)求AD的長及t的取值范圍;

(2)當(dāng)1.5≤t≤t0(t0為(1)中t的最大值)時,求y關(guān)于t的函數(shù)關(guān)系式;

(3)請具體描述:在動點(diǎn)P、Q的運(yùn)動過程中,△PQB的面積隨著t的變化而變化的規(guī)律.

解:

答案:
解析:

  (1)在梯形ABCD中,AD∥BC、Ð B=90°過D作DE^ BC于E點(diǎn)

  ∴AB∥DE

  ∴四邊形ABED為矩形      1分

  DE=AB=12 cm

  在Rt△DEC中,DE=12 cm,DC=13 cm

  ∴EC=5 cm

  ∴AD=BE=BC=EC=3 cm      2分

  點(diǎn)P從出發(fā)到點(diǎn)C共需=8(秒)

  點(diǎn)Q從出發(fā)到點(diǎn)C共需=89少)  3分

  又∵t≥0

  ∴o≤t≤8    4分

  (2)當(dāng)t=1.5(秒)時,AP3,即P運(yùn)動到D點(diǎn)    5分

  ∴當(dāng)1.5≤t≤8時,點(diǎn)P在DC邊上

  ∴PC=16-2t

  過點(diǎn)P作PM⊥BC于M

  ∴PM∥DE

  ∴

  ∴(16-2t)    7分

  又∵BQ=t

  ∴

 。

 。      3分

  (3)當(dāng)0≤t≤1.5時,△PQB的面積隨著t的增大而增大;

  當(dāng)1.5<t≤4時,△PQB的面積隨著t的增大而(繼續(xù))增大;

  當(dāng)4<t≤8時,△PQB的面積隨著t的增大而減。     12分

  注:①上述不等式中,“1.5<t≤4”、“4<t≤8”寫成“1.5≤t≤4”、“4≤t≤8”也得分.

 、谌魧W(xué)生答:當(dāng)點(diǎn)P在AD上運(yùn)動時,△PQB的面積先隨著t的增大而增大,當(dāng)點(diǎn)P在DC上運(yùn)動時,△PQB的面積先隨著t的增大而(繼續(xù))增大,之后又隨著t的增大而減。o2分

  ③若學(xué)生答:△PQB的面積先隨著t的增大而減小給1分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直角梯形ABCD中,AD∥BC∥EF,∠A=90°,BC=DC=4,AC、BD交于E,且EF=ED.
(1)求證:△DBC為等邊三角形.
(2)若M為AD的中點(diǎn),求過M、E、C的拋物線的解析式.
(3)判定△BCD的外心是否在該拋物線上(說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、當(dāng)我們遇到梯形問題時,我們常用分割的方法,將其轉(zhuǎn)化成我們熟悉的圖形來解決:
(1)按要求對下列梯形分割(分割線用虛線)
①分割成一個平行四邊形和一個三角形;  ②分割成一個長方形和兩個直角三角形;

(2)如圖,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=4cm,BC=8cm,∠C=45°,請你用適當(dāng)?shù)姆椒▽μ菪畏指,利用分割后的圖形求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形的一條對角線把梯形分為一個直角三角形和一個邊長為8cm的等邊三角形,則梯形的中位線長為 (  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形ABCD中,AD∥BC(AD<BC),∠B=90°,AB=AD+BC.點(diǎn)E是CD的中點(diǎn),點(diǎn)F是AB上的點(diǎn),∠ADF=45°,F(xiàn)E=a,梯形ABCD的面積為m.
(1)求證:BF=BC;
(2)求△DEF的面積(用含a、m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形ABCD中,AD∥BC,∠B=90°,∠C=60°,BC=12cm,DC=16cm,動點(diǎn)P沿A→D→C線路以2cm/秒的速度向C運(yùn)動,動點(diǎn)Q沿B→C線路以1cm/秒的速度向C運(yùn)動.P、Q兩點(diǎn)分別從A、B同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)C點(diǎn)時,另一點(diǎn)也隨之停止.設(shè)運(yùn)動時間為t秒,△PQB的面積為y cm2
(1)求AD的長及t的取值范圍;
(2)求y關(guān)于t的函數(shù)關(guān)系式;
(3)是否存在這樣的t,使得△PQB的面積為
9
3
2

查看答案和解析>>

同步練習(xí)冊答案