已知:如圖,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)精英家教網(wǎng)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線(xiàn);
(2)若PC是圓O的切線(xiàn),BC=8,求DE的長(zhǎng).
分析:(1)要證明AD是圓O的切線(xiàn),只要證明∠BDA=90°即可;
(2)連接OP,根據(jù)三角函數(shù)可求得PC,CD的長(zhǎng),再在RT△ADE中利用三角函數(shù)求得DE的長(zhǎng).
解答:精英家教網(wǎng)(1)證明:∵AB=AC,點(diǎn)D是邊BC的中點(diǎn),
∴AD⊥BD.
又∵BD是圓O直徑,
∴AD是圓O的切線(xiàn).

(2)解:連接OP,
由BC=8,得CD=4,OC=6,OP=2,
∵PC是圓O的切線(xiàn),O為圓心,
∴∠OPC=90°.
由勾股定理,得PC=4
2
,
在△OPC中,tan∠OCP=
OP
CP
=
2
4
,
在△DEC中,tan∠DCE=
DE
DC
=
2
4
,DE=DC•
2
4
=
2
點(diǎn)評(píng):此題考查學(xué)生對(duì)切線(xiàn)的判定及綜合解直角三角形的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在A(yíng)B、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線(xiàn)AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線(xiàn)BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線(xiàn)段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線(xiàn)DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線(xiàn)DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在A(yíng)B、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:證明題

已知:如圖,在A(yíng)B、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案